4.6 Article

Pulsed electric fields-assisted extraction of valuable compounds from red grape pomace: Process optimization using response surface methodology

Journal

FRONTIERS IN NUTRITION
Volume 10, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnut.2023.1158019

Keywords

pulsed electric fields (PEF); green extraction; red grape by-products; bioactive compounds; response surface methodology; HPLC-PDA

Ask authors/readers for more resources

This study optimized the pulsed electric fields (PEF)-assisted extraction process to enhance the extraction yields of bioactive compounds from red grape pomace. Results showed that under the optimal processing conditions (electric field strength of 4.6 kV/cm, energy input of 20 kJ/kg), PEF significantly improved the permeability of grape pomace cell membrane, resulting in increased extraction yields of total phenolic content, flavonoid content, total anthocyanin content, tannin content, and antioxidant activity.
BackgroundThe application of Pulsed electric fields as a mild and easily scalable electrotechnology represents an effective approach to selectively intensify the extractability of bioactive compounds from grape pomace, one of the most abundant residues generated during the winemaking process. ObjectiveThis study addressed the optimization of the pulsed electric fields (PEF)-assisted extraction to enhance the extraction yields of bioactive compounds from red grape pomace using response surface methodology (RSM). MethodsThe cell disintegration index (Z(p)) was identified as response variable to determine the optimal PEF processing conditions in terms of field strength (E = 0.5-5 kV/cm) and energy input (W-T = 1-20 kJ/kg). For the solid-liquid extraction (SLE) process the effects of temperature (20-50 degrees C), time (30-300min), and solvent concentration (0-50% ethanol in water) on total phenolic content (TPC), flavonoid content (FC), total anthocyanin content (TAC), tannin content (TC), and antioxidant activity (FRAP) of the extracts from untreated and PEF-treated plant tissues were assessed. The phenolic composition of the obtained extracts was determined via HPLC-PDA. ResultsResults demonstrated that the application of PEF at the optimal processing conditions (E = 4.6 kV/cm, W-T = 20 kJ/kg) significantly enhanced the permeabilization degree of cell membrane of grape pomace tissues, thus intensifying the subsequent extractability of TPC (15%), FC (60%), TAC (23%), TC (42%), and FRAP values (31%) concerning the control extraction. HPLC-PDA analyses showed that, regardless of the application of PEF, the most abundant phenolic compounds were epicatechin, p-coumaric acid, and peonidin 3-O-glucoside, and no degradation of the specific compounds occurred upon PEF application. ConclusionThe optimization of the PEF-assisted extraction process allowed to significantly enhance the extraction yields of high-value-added compounds from red grape pomace, supporting further investigations of this process at a larger scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available