4.6 Article

Human epidermal growth factor receptor 3 serves as a novel therapeutic target for acral melanoma

Journal

CELL DEATH DISCOVERY
Volume 9, Issue 1, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s41420-023-01358-5

Keywords

-

Categories

Ask authors/readers for more resources

This study evaluated the potential of HER3-targeted therapy for acral melanoma (AM) by investigating the expression and function of HER3. The results showed that HER3 was highly expressed in AM tissues and significantly correlated with patient's disease-free survival. Inhibition of HER3 reduced the anchorage-independent growth of AM cells likely through affecting the nuclear translocation of Yes-associated protein.
Acral melanoma (AM) is a rare, life-threatening skin cancer. Since AM bears unique features, existing therapies for other types of malignant melanomas have limited effects and the establishment of effective treatments for AM is strongly desired. Human epidermal growth factor receptor 3 (HER3) is a receptor tyrosine kinase that is frequently elevated in tumors and contributes to tumor progression, so it is considered a promising therapeutic target for tumors. This study was established to evaluate the potential of HER3-targeted therapy to treat AM by investigating the expression and function of HER3. HER3 expression was immunohistochemically analyzed in AM lesions of 72 patients and in AM cell lines. To investigate function of HER3, effects of HER3 inhibition on cell proliferation, apoptosis/survival, anchorage-independent growth, and underlying signals were assessed. HER3 was expressed in patients' AM tissues with various intensities and HER3 expression was significantly correlated with patient's disease-free survival. In vitro analyses revealed that HER3 is more highly expressed in AM cells than in normal epidermal melanocytes. AM cells were also shown to be sensitive to the cytotoxic part of a HER3-targeted antibody-drug conjugate. Inhibition of HER3 did not affect cell proliferation, whereas it decreased the anchorage-independent growth of AM cells likely through affecting the nuclear translocation of Yes-associated protein. It is implied that HER3 may serve as a novel therapeutic target for AM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available