4.6 Article

In Vitro Hemocompatibility and Genotoxicity Evaluation of Dual-Labeled [99mTc]Tc-FITC-Silk Fibroin Nanoparticles for Biomedical Applications

Journal

PHARMACEUTICALS
Volume 16, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/ph16020248

Keywords

radiolabeling; silk fibroin NPs; Tc-99m; FITC; SPECT; nuclear imaging; multimodal imaging; hemocompatibility; genotoxicity; CBMN assay

Ask authors/readers for more resources

Nuclear imaging, using radiolabeled nanomaterials as imaging probes, is a valuable tool for medical diagnosis. This study developed a direct method for radiolabeling FITC-tagged silk fibroin nanoparticles (SFN) and demonstrated its stability and efficiency in biological media. The dual-labeling method showed potential for further investigations of SFN biodistribution in vivo.
Nuclear imaging is a highly sensitive and noninvasive imaging technique that has become essential for medical diagnosis. The use of radiolabeled nanomaterials capable of acting as imaging probes has shown rapid development in recent years as a powerful, highly sensitive, and noninvasive tool. In addition, quantitative single-photon emission computed tomography (SPECT) images performed by incorporating radioisotopes into nanoparticles (NPs) might improve the evaluation and the validation of potential clinical treatments. In this work, we present a direct method for [Tc-99m]Tc-radiolabeling of FITC-tagged silk fibroin nanoparticles (SFN). NPs were characterized by means of dynamic light scattering and scanning electron microscopy. In vitro studies were carried out, including the evaluation of stability in biological media and the evaluation of hemocompatibility and genotoxicity using the cytokinesis block micronucleus (CBMN) assay. The radiolabeling method was reproducible and robust with high radiolabeling efficiency (similar to 95%) and high stability in biological media. Hydrodynamic properties of the radiolabeled NPs remain stable after dual labeling. The interaction of SFN with blood elicits a mild host response, as expected. Furthermore, CBMN assay did not show genotoxicity induced by [Tc-99m]Tc-FITC-SFN under the described conditions. In conclusion, a feasible and robust dual-labeling method has been developed whose applicability has been demonstrated in vitro, showing its value for further investigations of silk fibroin NPs biodistribution in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available