4.6 Review

Chemical Constituents, Anticancer and Anti-Proliferative Potential of Limonium Species: A Systematic Review

Journal

PHARMACEUTICALS
Volume 16, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/ph16020293

Keywords

antitumor activity; cytotoxicity; metastasis; phytochemicals; Plumbaginaceae; qualitative synthesis

Ask authors/readers for more resources

This study aimed to synthesize the anticancer and anti-proliferative potential of Limonium species through a systematic review. The results indicate that Limonium species have the potential to be a source of new potential cytotoxic and anticancer agents. However, further research and improved experimental designs are needed to better understand the mechanism of action of these compounds.
Limonium species represent a source of bioactive compounds that have been widely used in folk medicine. This study aimed to synthesize the anticancer and anti-proliferative potential of Limonium species through a systematic review. Searches were performed in the electronic databases PubMed/MEDLINE, Scopus, and Scielo and via a manual search. In vivo or in vitro studies that evaluated the anticancer or anti-proliferative effect of at least one Limonium species were included. In total, 942 studies were identified, with 33 articles read in full and 17 studies included for qualitative synthesis. Of these, 14 (82.35%) refer to in vitro assays, one (5.88%) was in vivo, and two (11.76%) were designed as in vitro and in vivo assays. Different extracts and isolated compounds from Limonium species were evaluated through cytotoxic analysis against various cancer cells lines (especially hepatocellular carcinoma-HepG2; n = 7, 41.18%). Limonium tetragonum was the most evaluated species. The possible cellular mechanism involved in the anticancer activity of some Limonium species included the inhibition of enzymatic activities and expression of matrix metalloproteinases (MMPs), which suggested anti-metastatic effects, anti-melanogenic activity, cell proliferation inhibition pathways, and antioxidant and immunomodulatory effects. The results reinforce the potential of Limonium species as a source for the discovery and development of new potential cytotoxic and anticancer agents. However, further studies and improvements in experimental designs are needed to better demonstrate the mechanism of action of all of these compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available