4.7 Article

Exchange field enhanced upper critical field of the superconductivity in compressed antiferromagnetic EuTe2

Journal

COMMUNICATIONS PHYSICS
Volume 6, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s42005-023-01155-7

Keywords

-

Ask authors/readers for more resources

Understanding the interplay between superconductivity and magnetism in EuTe2 is achieved through high pressure studies. A structural transition and superconductivity are observed at different pressures. Strong couplings between local moments and conduction electrons are observed in the low-pressure phase, while the high-pressure phase loses magnetism and has a lower upper critical field.
Understanding the interplay between superconductivity and magnetism has been a longstanding challenge in condensed matter physics. Here we report high pressure studies on the C-type antiferromagnetic semiconductor EuTe2 up to 36.0 GPa. A structural transition from the I4/mcm to the C2/m space group is identified at similar to 16 GPa. Superconductivity is observed above similar to 5 GPa in both structures. In the low-pressure phase, magnetoresistance measurements reveal strong couplings between the local moments of Eu2+ and the conduction electrons of Te 5p orbits. The upper critical field of superconductivity is well above the Pauli limit. While EuTe2 becomes nonmagnetic in the high-pressure phase and the upper critical field drops below the Pauli limit. Our results demonstrate that the high upper critical field of EuTe2 in the low-pressure phase is due to the exchange field compensation effect of Eu2+ and the superconductivity in both structures may arise in the framework of the Bardeen-Cooper-Schrieffer theory.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available