4.8 Article

Light-Driven MXene-Based Microrobots: Mineralization of Bisphenol A to CO2 and H2O

Journal

SMALL METHODS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smtd.202201547

Keywords

bisphenol A; environmental remediation; microrobots; microswimmers; MXene; nano; micromotors; photocatalysis

Ask authors/readers for more resources

Light-driven magnetic MXene-based microrobots (MXeBOTs) have been developed for efficient removal and degradation of bisphenol A (BPA). The MXeBOTs utilize embedded Fe2O3 nanoparticles (NPs) for magnetic propulsion and grafted bismuth NPs as cocatalysts. The stability and reusability of MXeBOTs are studied in relation to BPA concentration and chemical composition of the swimming environment.
Light-driven magnetic MXene-based microrobots (MXeBOTs) have been developed as an active motile platform for efficiently removing and degrading bisphenol A (BPA). Light-driven MXeBOTs are facilitated with the second control engine, i.e., embedded Fe2O3 nanoparticles (NPs) for magnetic propulsion. The grafted bismuth NPs act as cocatalysts. The effect of the BPA concentration and the chemical composition of the swimming environment on the stability and reusability of the MXeBOTs are studied. The MAXBOTs, a developed motile water remediation platform, demonstrate the ability to remove/degrade approximately 60% of BPA within just 10 min and achieve near-complete removal/degradation (approximate to 100%) within 1 h. Above 86% of BPA is mineralized within 1 h. The photocatalytic degradation of BPA using Bi/Fe/MXeBOTs demonstrates a significant advantage in the mineralization of BPA to CO2 and H2O.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available