4.8 Article

Reconstruction of helmholtz plane to stabilize zinc metal anode/electrolyte interface

Related references

Note: Only part of the references are listed.
Article Chemistry, Physical

Differentiating contribution to desolvation ability from molecular structure and composition for screening highly-effective additives to boost reversibility of zinc metal anode

Yichan Hu et al.

Summary: Optimizing aqueous electrolytes with additives is a practical strategy to enhance the rechargeability of full zinc metal batteries (ZMBs) by delaying dendrite formation on the zinc metal anode (ZMA). In this study, three additives, thio-urea, urea, and allantoin, were investigated to improve the baseline ZnSO4 electrolyte. The screening principles for selecting additives with stronger desolvation ability towards hydrated zinc ions were identified as carbonyl (urea) being better than thiocarbonyl (thiourea) in molecular composition, and bidentate coordination mode (allantoin) outperforming monodentate mode (urea) in molecular structure. By optimizing the allantoin-ZnSO4 hybrid electrolyte, the rechargability of the ZMA||carbon-cloth@MnO2 full ZMBs was significantly boosted, resulting in 85.7% capacity retention over 2000 cycles compared to 40.5% with additive-free ZnSO4 electrolyte.

ENERGY STORAGE MATERIALS (2023)

Article Chemistry, Multidisciplinary

Ion Sieve: Tailoring Zn2+ Desolvation Kinetics and Flux toward Dendrite-Free Metallic Zinc Anodes

Shangqing Jiao et al.

Summary: This study presents an ion sieve coating that effectively inhibits dendrite growth on metallic zinc anodes, improving the rechargeability of aqueous zinc metal batteries. Experimental and theoretical analyses demonstrate that the coating facilitates the desolvation of zinc clusters, weakens hydrogen evolution reaction, and homogenizes ion flux, resulting in dendrite-free zinc deposition. The symmetric cell with the ion sieve coating shows a lifespan of up to 3000 hours, highlighting the enhanced performance of zinc metal batteries.

ACS NANO (2022)

Article Nanoscience & Nanotechnology

Stable Zinc Anodes Enabled by Zincophilic Cu Nanowire Networks

Shiyin Xie et al.

Summary: This article reports a novel strategy of using zincophilic Cu nanowire networks to stabilize zinc anodes. The Cu nanowire networks can homogenize the surface electric field and Zn2+ concentration field, and inhibit side reactions through their hydrophobic feature. The facets and edge sites of the Cu nanowires, especially the latter ones, are highly zincophilic, which promotes uniform zinc nucleation/deposition. The protected zinc anodes exhibit an ultralong cycle life and rapid charge/discharge ability.

NANO-MICRO LETTERS (2022)

Article Chemistry, Physical

Highly reversible zinc metal anodes enabled by protonated melamine

Cong Huang et al.

Summary: By introducing melamine (Mel) to stabilize the zinc anode, a stable electrical double layer (EDL) structure is obtained, which prevents side reactions and facilitates uniform zinc deposition, leading to excellent performance in zinc batteries and zinc-ion hybrid supercapacitors.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Article Chemistry, Physical

Zwitterionic Bifunctional Layer for Reversible Zn Anode

Renpeng Chen et al.

Summary: A bifunctional poly zwitterionic ionic liquid (PZIL) is designed as a new ion-migration layer to suppress Zn dendrites and side reactions. By guiding the distribution of Zn ions and forming a water-poor interface, it enables stable and reversible performance of Zn-ion batteries.

ACS ENERGY LETTERS (2022)

Article Chemistry, Multidisciplinary

Boosting the Kinetics and Stability of Zn Anodes in Aqueous Electrolytes with Supramolecular Cyclodextrin Additives

Kang Zhao et al.

Summary: This study demonstrates the potential of cyclodextrins (CDs) as electrolyte additives for rechargeable Zn batteries. The addition of alpha-CD improves the stability and kinetics of Zn plating and stripping by adsorbing on the Zn surface and suppressing water-induced side reactions. This finding provides insight into the use of supramolecular macrocycles for enhancing the performance of aqueous battery chemistry.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Multidisciplinary

Halogenated Zn2+ Solvation Structure for Reversible Zn Metal Batteries

Qiu Zhang et al.

Summary: By introducing halogen ions, the challenges of dendritic growth and hydrogen evolution reaction in zinc metal batteries can be overcome. Designing an electrolyte composed of zinc acetate and ammonium halide can form a halogenated Zn2+ solvation structure, achieving high coulombic efficiency and suppressing dendritic growth.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Review Chemistry, Applied

Electrolyte design strategies towards long-term Zn metal anode for rechargeable batteries

Ming Xu et al.

Summary: This article explores the potential of rechargeable zinc batteries as alternative energy storage devices, highlighting their high safety, low cost, and environmental friendliness. However, the issues of low Coulombic efficiency and poor cycle stability of the zinc anode limit the battery's cycle life. Recent electrolyte design strategies focus on regulating cation-water interaction and interface adjustment in aqueous electrolytes, as well as exploring new types of electrolytes with less water, non-aqueous solvents, or even no solvents. The article concludes with a brief comparison of failure mechanisms in aqueous and nonaqueous electrolyte-based full cells and possible directions for future research.

JOURNAL OF ENERGY CHEMISTRY (2022)

Article Chemistry, Physical

Texture Control of Commercial Zn Foils Prolongs Their Reversibility as Aqueous Battery Anodes

Zibo Chen et al.

Summary: This study developed a grain-size-assisted cold-rolling method to reshape and unify commercial Zn foils into strong (002) textured Zn. The resulting (002) textured Zn foils showed better resistance to side reactions and dendrite growth as aqueous metal anodes. The strategy demonstrated in this work provides a scalable pathway toward highly reversible Zn anodes for aqueous zinc-ion energy storage devices.

ACS ENERGY LETTERS (2022)

Article Chemistry, Multidisciplinary

Stimulating Cu-Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors

Minhyung Kwon et al.

Summary: This study successfully constructs a stable zinc metal anode by identifying the growth mechanism of densely packed micrometer-sized Zn particles on Cu foil, which contributes to improving the performance of aqueous Zn-ion batteries.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Physical

Reversible aqueous Zn battery anode enabled by a stable complexation adsorbent interface

Yangtao Ou et al.

Summary: In this study, ethylenediamine tetraacetic acid (EDTA) was used to replace water molecules adsorbed on zinc electrodes, forming a stable complexation adsorbent interface. The chemically adsorbed EDTA layer reduced corrosion rate and promoted uniform zinc plating. This research demonstrated the importance of the complexation adsorbent interface in designing low-cost and highly reversible zinc electrodes for RAZBs.

ECOMAT (2022)

Article Chemistry, Multidisciplinary

Identifying the Critical Anion-Cation Coordination to Regulate the Electric Double Layer for an Efficient Lithium-Metal Anode Interface

Rui Xu et al.

Summary: The electric double layer (EDL) chemistry at the electrode/electrolyte interface is found to predominantly control the competitive reduction reactions during SEI construction on Li metal anode. Introducing multi-valent cation additives has been validated as a promising strategy to enhance the performance of SEI, shedding new light on the targeted regulation of reactive alkali metal interfaces.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents

Junnan Hao et al.

Summary: A similar antisolvent strategy has been used to enhance Zn reversibility and suppress dendrite growth in Zn plating/stripping, with promising results shown in 50% methanol electrolyte. This low-cost strategy can be easily applied to other solvents, demonstrating practical universality and potential for enhancing performance in electrochemistry and energy storage research.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives

Xiaoxia Guo et al.

Summary: The study found that adding lithium chloride to the electrolyte can effectively suppress the formation of dendrites on the zinc anode, improving the stability and safety of the battery.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes

Lin Ma et al.

Summary: This study demonstrates remarkable improvements in zinc reversibility in aqueous electrolytes through the use of phosphonium-based cations, particularly with ligands containing an ether linkage. The unique interphase chemistry from phosphonium and its functionalities are identified as key factors in dictating reversible zinc chemistry, leading to excellent full cell performance with high coulombic efficiency and dendrite-free zinc plating/stripping.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis

Jiguo Ma et al.

Summary: This study presents a method using chiral catalyst to achieve direct asymmetric conjugated addition of NH2-free glycinate with relatively weak electrophiles, successfully synthesizing various chiral products, which can be further converted into Alzheimer's drug Rolipram.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Nanoscience & Nanotechnology

Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition

Chuang Sun et al.

Summary: Well-dispersed MXene nanosheets in the electrolyte facilitate Zn2+ migration and deposition, while the MXene interfacial layer induces uniform nucleation. The MXene-containing electrolyte enables dendrite-free Zn plating/striping with high efficiency and superior reversibility.

NANO-MICRO LETTERS (2021)

Article Chemistry, Multidisciplinary

Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries

Dan Li et al.

Summary: A low-concentration aqueous Zn(OTF)(2)-Zn(NO3)(2) electrolyte was designed to form a robust inorganic ZnF2-Zn-5(CO3)(2)(OH)(6)-organic bilayer SEI, allowing high Coulombic efficiency and energy density. The study achieved a high CE of 99.8% for 200 h in Ti parallel to Zn cells, and a high energy density of 168 Wh kg(-1) with 96.5% retention for 700 cycles in Zn parallel to MnO2 cells with a low Zn/MnO2 capacity ratio of 2:1.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Dendrite-free zinc anode enabled by zinc-chelating chemistry

Minghe Luo et al.

Summary: This study utilized a chelating agent, BIS-TRIS, to regulate the solvation sheath structure of Zn2+ in aqueous Zn-ion batteries, restricting Zn2+ 2D diffusion and inhibiting dendrite growth. Partial substitution of water with chelator also suppressed the hydrogen evolution reaction. This strategy led to the achievement of a stable Zn cell and aqueous Zn/MnO2 battery.

ENERGY STORAGE MATERIALS (2021)

Article Nanoscience & Nanotechnology

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Longsheng Cao et al.

Summary: The study introduces an aqueous zinc battery with a solid-electrolyte interphase that enables excellent performance in various tests, demonstrating its potential for practical applications in energy storage.

NATURE NANOTECHNOLOGY (2021)

Article Chemistry, Physical

Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery

Ziyi Cao et al.

Summary: By using a spin-coating method to uniformly coat Zn with a commercial cyanoacrylate adhesive, a stable artificial solid/electrolyte interphase is formed to protect the Zn surface and regulate Zn ion nucleation barriers, leading to improved cycling stability and high Coulombic efficiency.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes

Longsheng Cao et al.

Summary: By using a eutectic electrolyte with tin chloride additive, a zincophilic/zincophobic Sn/Zn-5(OH)(8)Cl-2•H2O bilayer interphase is formed, overcoming the challenges of Zn dendritic growth and poor low-temperature performance in aqueous Zn batteries. The eutectic electrolyte enables high Coulombic efficiency and steady charge/discharge performance at low temperatures, showing great potential for practical applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive

Peng Sun et al.

Summary: The addition of glucose in ZnSO4 electrolyte can improve the performance of Zn ion batteries by suppressing Zn dendrite growth and side reactions, enhancing stability.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite-free Zinc Ion Batteries

Jin Cao et al.

Summary: A functional separator composed of cellulose nanofibers and graphene oxide is developed for dendrite-free and stable zinc ion batteries. This separator promotes uniform zinc deposition and significantly enhances the performance of zinc anodes in various types of batteries.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Tailoring the Stability and Kinetics of Zn Anodes through Trace Organic Polymer Additives in Dilute Aqueous Electrolyte

Mengdie Yan et al.

Summary: This study demonstrates the improvement of zinc anodes in low-cost aqueous electrolytes by adding polymers of different polarities, resulting in over 1300 hours of operation time and high Coulombic efficiency under 2 mA/cm², 2 mAh/cm² conditions.

ACS ENERGY LETTERS (2021)

Article Chemistry, Multidisciplinary

Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm-2 and 30 mA h cm-2

Xiaohui Zeng et al.

Summary: Inspired by the bio-adhesion principle, a stable SEI layer of polydopamine was successfully constructed on a Zn anode, offering multifunctional features that regulate Zn nucleation, enhance Zn-ion conductivity, and block interfacial side reactions. This approach significantly improved the performance and stability of rechargeable aqueous zinc-ion batteries.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer†

Xiaotan Zhang et al.

Summary: The CNG membrane, serving as a desolvation layer, effectively prevents water molecules from contacting the zinc anode, thereby delaying water-induced corrosion reactions and promoting redirected zinc deposition through deanionization shock. The flexible and toughened nature of the CNG membrane allows it to withstand strong forces and accommodate surface fluctuations of the zinc anode during plating/stripping processes, resulting in enhanced Coulombic efficiency and extended cycle life.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Monolithic Nanoporous Zn Anode for Rechargeable Alkaline Batteries

Congcheng Wang et al.

ACS NANO (2020)

Review Chemistry, Multidisciplinary

Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries

Qi Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Chemistry, Multidisciplinary

Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage

Philippe Poizot et al.

CHEMICAL REVIEWS (2020)

Review Chemistry, Physical

Thermodynamic Understanding of Li-Dendrite Formation

Xiangwen Gao et al.

JOULE (2020)

Article Chemistry, Physical

A dendrite-free zinc anode for rechargeable aqueous batteries

Qinping Jian et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes

Chong Yan et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)