4.6 Article

Application of Spectral Algorithm Applied to Spatially Registered Bi-Parametric MRI to Predict Prostate Tumor Aggressiveness: A Pilot Study

Journal

DIAGNOSTICS
Volume 13, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/diagnostics13122008

Keywords

logistic probability; prostate cancer; bi-parametric magnetic resonance imaging (BP-MRI); Gleason score (GS); signal-to-clutter ratio (SCR); regularization

Ask authors/readers for more resources

This study predicts the risk of clinically significant prostate cancer (CsPCa) and correlates it with the ISUP grade using processed SCR derived from SRBP-MRI. The results show a high correlation between SCR values and ISUP grade and CsPCa/CiPCa, indicating the potential of SRBP-MRI in non-invasive management of prostate cancer.
Background: Current prostate cancer evaluation can be inaccurate and burdensome. Quantitative evaluation of Magnetic Resonance Imaging (MRI) sequences non-invasively helps prostate tumor assessment. However, including Dynamic Contrast Enhancement (DCE) in the examined MRI sequence set can add complications, inducing possible side effects from the IV placement or injected contrast material and prolonging scanning time. More accurate quantitative MRI without DCE and artificial intelligence approaches are needed. Purpose: Predict the risk of developing Clinically Significant (Insignificant) prostate cancer CsPCa (CiPCa) and correlate with the International Society of Urologic Pathology (ISUP) grade using processed Signal to Clutter Ratio (SCR) derived from spatially registered bi-parametric MRI (SRBP-MRI) and thereby enhance non-invasive management of prostate cancer. Methods: This pilot study retrospectively analyzed 42 consecutive prostate cancer patients from the PI-CAI data collection. BP-MRI (Apparent Diffusion Coefficient, High B-value, T2) were resized, translated, cropped, and stitched to form spatially registered SRBP-MRI. Efficacy of noise reduction was tested by regularizing, eliminating principal components (PC), and minimizing elliptical volume from the covariance matrix to optimize the SCR. MRI guided biopsy (MRBx), Systematic Biopsy (SysBx), combination (MRBx + SysBx), or radical prostatectomy determined the ISUP grade for each patient. ISUP grade >= 2 (<2) was judged as CsPCa (CiPCa). Linear and logistic regression were fitted to ISUP grade and CsPCa/CiPCa SCR. Correlation Coefficients (R) and Area Under the Curves (AUC) for Receiver Operator Curves (ROC) evaluated the performance. Results: High correlation coefficients (R) (>0.55) and high AUC (=1.0) for linear and/or logistic fit from processed SCR and z-score for SRBP-MRI greatly exceed fits using prostate serum antigen, prostate volume, and patient age (R similar to 0.17). Patients assessed with combined MRBx + SysBx and from individual MRI scanners achieved higher R (DR = 0.207+/-0.118) than all patients used in the fits. Conclusions: In the first study, to date, spectral approaches for assessing tumor aggressiveness on SRBP-MRI have been applied and tested and achieved high values of R and exceptional AUC to fit the ISUP grade and CsPCA/CiPCA, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available