4.6 Article

Phosphorylation of Alkali Extracted Mandua Starch by STPP/STMP for Improving Digestion Resistibility

Journal

ACS OMEGA
Volume -, Issue -, Pages 11750-11767

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c05783

Keywords

-

Ask authors/readers for more resources

The phosphorylation of alkali extracted mandua starch was found to decrease its digestibility and increase its resistant starch content. The chemically modified starch showed improved thermal stability and internal structure. This modified starch has potential applications in the development of food and pharmaceutical formulations.
The chemical modifications of starch granules have been adopted to improve the characteristics, viz., paste clarity, resistant starch content, thermal stability, and so forth. The modified starch has been applied as a biopolymer in developing various preparations of food, nutraceutical, and pharmaceutical importance. The present work is focused on phosphorylation of alkali extracted mandua starch for improving digestion resistibility. The phosphorylation of mandua starch extracted from grains of Eleusine coracana (family Poaceae) was carried out by sodium tripolyphosphate/sodium trimetaphosphate at alkaline pH. After chemical treatment of mandua starch, the resistant starch (RS) content was increased significantly. The digestibility of chemically modified starch (CMS) was decreased down after treating by the phosphorylation process. The digestibility of CMS and alkali extracted mandua starch (AMS) in simulated intestinal fluid was found to be 32.64 +/- 1.98% w/w and 61.12 +/- 2.54% w/w, respectively. After chemical modification of mandua starch, a decrement was observed in amylose content, water-binding capacity, and swelling power. In the three-stage decomposition pattern of CMS studied by thermal gravimetric analysis, the significant changes in decomposition behavior also affirmed the impact of cross-linking in the improvement of stability of internal structure and resistibility of starch. In Fourier transform infrared (FTIR), the formation of the P=O bond was observed in CMS at 1250 cm(-1). The acute and sub-acute toxicity studies in terms of behavioral, haematological, and enzymological parameters for CMS were not different significantly from AMS and control (p > 0.05). The cellular architecture of the liver and the kidney were found normal after consumption of CMS. The results revealed that significant increment in RS fraction occurred after cross-linking of mandua starch. The prepared starch may be applied in developing various formulations of food and pharmaceutical importance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available