4.6 Article

Magnesium Bismuth Ferrite Nitrogen-Doped Carbon Nanomagnetic Perovskite: Synthesis and Characterization as a High-Performance Electrode in a Supercapacitor for Energy Storage

Journal

ACS OMEGA
Volume 8, Issue 18, Pages 16145-16157

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.3c00259

Keywords

-

Ask authors/readers for more resources

Magnesium ion doping enhances the electrochemical behavior of perovskite BiFeO3, and a high-performance MgBiFeO3-NC nanomagnetic composite is prepared as a supercapacitor for energy storage. The prepared sample exhibits excellent magnetic performance and specific area. Cyclic voltammetry and electrochemical analysis demonstrate high specific capacity and energy density.
Bismuth ferrite (BiFeO3) is regarded as an important ABO3 perovskite in the areas of energy storage and electronics. A high-performance novel MgBiFeO3-NC nanomagnetic composite (MBFO-NC) electrode was prepared using a perovskite ABO3-inspired method as a supercapacitor for energy storage. The electrochemical behavior of the perovskite BiFeO3 has been enhanced by magnesium ion doping in the basic aquatic electrolyte as the A-site. H2-TPR revealed that the doping of Mg2+ ions at the Bi3+ sites minimizes the oxygen vacancy content and improves the electrochemical characteristics of MgBiFeO3-NC. Various techniques were used to confirm the phase, structure, surface, and magnetic properties of the MBFO-NC electrode. The prepared sample showed an enhanced mantic performance and specific area with an average nanoparticle size of similar to 15 nm. The electrochemical behavior of the three-electrode system was shown by cyclic voltammetry to have a significant specific capacity of 2079.44 F/g at 30 mV/s in 5 M KOH electrolyte. GCD analysis at a 5 A/g current density also showed an enhanced capacity improvement of 2159.88 F/g, which is 3.4x higher than that of pristine BiFeO3. At the power density of 5284.83 W/kg, the constructed MBFO-NC//MBFO-NC symmetric cell showed an exceptional energy density of 730.04 W h/kg. The MBFO-NC//MBFO-NC symmetric cell was employed as a direct practical application of the electrode material to entirely brighten the laboratory panel, which had 31 LEDs. This work proposes the utilization of duplicate cell electrodes made of MBFO-NC//MBFO-NC in portable devices for daily use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available