4.6 Article

Novel Synthesis of CuO/GO Nanocomposites and Their Photocatalytic Potential in the Degradation of Hazardous Industrial Effluents

Journal

ACS OMEGA
Volume 8, Issue 20, Pages 17667-17681

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.3c00129

Keywords

-

Ask authors/readers for more resources

In this study, CuO, GO, and CuO/GO nanocomposites were synthesized successfully, with CuO:GO(5:1) achieving the highest photocatalytic degradation efficiency of MR dye. The thermodynamic parameters indicated that CuO/GO(5:1) nanocomposites can efficiently degrade organic pollutants at room temperature.
Photocatalytic degradation of dyes has been the subject of extensive study due to its low cost, eco-friendly operation, and absence of secondary pollutants. Copper oxide/graphene oxide (CuO/GO) nanocomposites are emerging as a new class of fascinating materials due to their low cost, nontoxicity, and distinctive properties such as a narrow band gap and good sunlight absorbency. In this study, copper oxide (CuO), graphene oxide (GO), and CuO/GO were synthesized successfully. X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectroscopy confirm the oxidation and production of GO from the graphene of lead pencil. According to the morphological analysis of nano composites, CuO nanoparticles of sizes <= 20 nm on the GO sheets were evenly adorned and distributed. Nanocomposites of different CuO:GO ratios (1:1 up to 5:1) were applied for the photocatalytic degradation of methyl red (MR). CuO:GO(1:1) nanocomposites achieved 84% MR dye removal, while CuO:GO(5:1) nanocomposites achieved the highest value (95.48%). The thermodynamic parameters of the reaction for CuO:GO(5:1) were evaluated using the Van't Hoff equation and the activation energy was found to be 44.186 kJ/mol. The reusability test of the nanocomposites showed high stability even after seven cycles. CuO/GO catalysts can be used in the photodegradation of organic pollutants in wastewater at room temperature due to their excellent properties, simple synthesis process, and low cost.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available