4.6 Article

Identification, Synthesis, and Characterization of Novel Baricitinib Impurities

Journal

ACS OMEGA
Volume 8, Issue 10, Pages 9583-9591

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.3c00100

Keywords

-

Ask authors/readers for more resources

Baricitinib is a novel active pharmaceutical ingredient used for rheumatoid arthritis treatment. During its synthesis, three unknown impurities were identified and isolated. The structures of these impurities were confirmed, and they can be used as reference standards for synthesizing highly pure baricitinib drug substance.
Baricitinib is a novel active pharmaceutical ingredient used in the treatment of rheumatoid arthritis, and it acts as an inhibitor of Janus kinase. During the synthesis of baricitinib, three unknown impurities were identified in several batches between 0.10 and 0.15% using high-performance liquid chromatography. The unknown compounds were isolated and identified as N-((3-(4-(7H-pyrrolo[2,3d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-5-oxotetrahydrofuran-3-yl)methyl)ethane sulfonamide (lactone impurity, BCL), 2-(3-(4-(7H-[4,7 '-bipyrrolo[2,3-d]pyrimidin]-4 '-yl)-1H-pyrazol-1-yl)-1-(ethylsulfonyl)azetidin-3-yl)acetonitrile (dimer impurity, BCD), and 2-(1-(ethylsulfonyl)-3-(4-(7-(hydroxymethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)1H-pyrazol-1-yl)azetidin-3-yl) acetonitrile (hydroxymethyl, BHM). These compounds were synthesized and confirmed against the isolated samples. The structures of all the three impurities were confirmed by extensive analysis of 1H NMR, 13C NMR, and mass spectrometry. The lactone impurity formation was explained by a plausible mechanism. The outcome of this study was very useful for scientists working in process as well as in formulation development. To synthesize highly pure baricitinib drug substance, these impurities can be used as reference standards due to their potential importance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available