4.7 Article

Potential Benefits of Seed Priming under Salt Stress Conditions on Physiological, and Biochemical Attributes of Micro-Tom Tomato Plants

Journal

PLANTS-BASEL
Volume 12, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/plants12112187

Keywords

tomato; salinity; seed priming; photosynthesis; biochemical attributes; fruit quality

Categories

Ask authors/readers for more resources

This experiment aimed to investigate the effect of pre-sowing seed priming on the photosynthesis parameters of tomato plants under salt stress conditions. The results showed that priming treatment improved the photosynthetic activity of tomato plants and enhanced the quality characteristics of the fruits. Particularly, seeds primed at -0.8 MPa and -1.2 MPa exhibited the most significant promotion on photosynthesis and fruit quality in tomato plants under salt stress.
Pre-sowing seed priming is one of the methods used to improve the performance of tomato plants under salt stress, but its effect photosynthesis, yield, and quality have not yet been well investigated. This experiment aimed to alleviate the impact of sodium chloride stress on the photosynthesis parameters of tomato cv. Micro-Tom (a dwarf Solanum lycopersicum L.) plants exposed to salt stress conditions. Each treatment combination consisted of five different sodium chloride concentrations (0 mM, 50 mM, 100 mM, 150 mM, and 200 mM) and four priming treatments (0 MPa, -0.4 MPa, -0.8 MPa, and -1.2 MPa), with five replications. Microtome seeds were subjected to polyethylene glycol (PEG6000) treatments for 48 hours for priming, followed by germination on a moist filter paper, and then transferred to the germination bed after 24 h. Subsequently, the seedlings were transplanted into the Rockwool, and the salinity treatments were administered after a month. In our study salinity significantly affected tomato plants' physiological and antioxidant attributes. Primed seeds produced plants that exhibited relatively better photosynthetic activity than those grown from unprimed seeds. Our findings indicated that priming doses of -0.8 MPa and -1.2 MPa were the most effective at stimulating tomato plant photosynthesis, and biochemical contents under salinity-related conditions. Moreover, primed plants demonstrated relatively superior fruit quality features such as fruit color, fruit Brix, sugars (glucose, fructose, and sucrose), organic acids, and vitamin C contents under salt stress, compared to non-primed plants. Furthermore, priming treatments significantly decreased the malondialdehyde, proline, and hydrogen peroxide content in plant leaves. Our results suggest that seed priming may be a long-term method for improving crop productivity and quality in challenging environments by enhancing the growth, physiological responses, and fruit quality attributes of Micro-Tom tomato plants under salt stress conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available