4.7 Article

Leaf Sample Size for Pesticide Application Technology Trials in Coffee Crops

Journal

PLANTS-BASEL
Volume 12, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/plants12051093

Keywords

Coffea arabica; ground-based application; airblast sprayers; spray deposition

Categories

Ask authors/readers for more resources

This study aimed to determine the appropriate sample size for application technology experiments in coffee crops by evaluating foliar spray deposition and soil runoff. The optimal sample size was five to eight sets of leaves for spray deposition and four to five Petri dishes for soil runoff.
Plot size, sample sufficiency, and number of repetitions are factors that affect the experimental errors or residuals and the expression of true differences among treatments. The objective of this study was to determine, using statistical models, the appropriate sample size for application technology experiments in coffee crops through the evaluation of foliar spray deposition and soil runoff in the ground-based application of pesticides. In the first stage, we determined the quantity of leaves per set and the volume of the solution for washing the leaves and extracting the tracer. We analyzed the variability between the coefficients of variation (CVs) of the amount of tracer extracted in two droplet classes (fine and coarse), for the different parts of the plants, and for the different quantities of leaves per set that were organized into intervals of five leaves (1-5, 6-10, 11-15, and 16-20). Less variability was found in the intervals with 10 leaves per set and using 100 mL of extraction solution. In the second stage, a field experiment was conducted using an entirely randomized design with 20 plots: 10 sprayed with fine droplets and 10 with coarse droplets. In each plot, 10 sets (samples) with 10 leaves each were collected from the upper and lower canopy of the coffee trees. Moreover, 10 Petri dishes were placed per plot and collected after application. Based on the results of the spray deposition (mass of tracer extracted per cm(2) of leaf), we determined the optimal sample size using the maximum curvature and maximum curvature of the coefficient of variation methods. Higher variabilities were related to the targets that are more difficult to reach. Thus, this study determined an optimal sample size between five and eight sets of leaves for spray deposition, and four to five Petri dishes for soil runoff.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available