4.7 Article

Arbuscular Mycorrhizal Fungi Induce Changes of Photosynthesis-Related Parameters in Virus Infected Grapevine

Journal

PLANTS-BASEL
Volume 12, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/plants12091783

Keywords

GRSPaV; Rhizophagus irregularis; Funneliformis mosseae; Funneliformis caledonium; GLRaV-3; GPGV; net photosynthesis rate; chlorophyll

Categories

Ask authors/readers for more resources

The study demonstrates that arbuscular mycorrhizal fungi (AMF) can have positive effects on grapevine performance in the context of viral infection. AMF significantly improve net photosynthesis rate, conductance to H2O, chlorophyll a concentration, total carotenoid concentration, and dry matter content of grapevine facing biotic stress.
The negative effects of viruses and the positive effects of arbuscular mycorrhizal fungi (AMF) on grapevine performance are well reported, in contrast to the knowledge about their interactive effects in perennial plants, e.g., in grapevine. To elucidate the physiological consequences of grapevine-AMF-virus interactions, two different AMF inoculum (Rhizophagus irregularis and 'Mix AMF') were used on grapevine infected with grapevine rupestris stem pitting virus, grapevine leafroll associated virus 3 and/or grapevine pinot gris virus. Net photosynthesis rate (A(N)), leaf transpiration (E), intercellular CO2 concentration (C-i) and conductance to H2O (g(s)) were measured at three time points during one growing season. Furthermore, quantum efficiency in light (f(PSII)) and electron transport rate (ETR) were surveyed in leaves of different maturity, old (basal), mature (middle) and young (apical) leaf. Lastly, pigment concentration and growth parameters were analysed. Virus induced changes in grapevine were minimal in this early infection stage. However, the AMF induced changes of grapevine facing biotic stress were most evident in higher net photosynthesis rate, conductance to H2O, chlorophyll a concentration, total carotenoid concentration and dry matter content. The AMF presence in the grapevine roots seem to prevail over virus infection, with Rhizophagus irregularis inducing greater photosynthesis changes in solitary form rather than mixture. This study shows that AMF can be beneficial for grapevine facing viral infection, in the context of functional physiology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available