4.7 Article

Biochemical and Molecular Responses Underlying the Contrasting Phosphorus Use Efficiency in Ryegrass Cultivars

Journal

PLANTS-BASEL
Volume 12, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/plants12061224

Keywords

phosphorus acquisition efficiency; phosphorus utilization efficiency; phosphate transporters; acid phosphatases; ryegrass

Categories

Ask authors/readers for more resources

This study aimed to identify ryegrass cultivars with contrasting phosphorus (P) use efficiency and assess their associated biochemical and molecular responses. Nine ryegrass cultivars were evaluated under optimal and P-deficient conditions, and the activity and gene expression of acid phosphatases (APases) and P transporters were analyzed. The results showed that cultivars with high P acquisition efficiency were influenced by root-related responses, while cultivars with high P utilization efficiency were influenced by P transporters and APase activity in shoots.
Improving plant ability to acquire and efficiently utilize phosphorus (P) is a promising approach for developing sustainable pasture production. This study aimed to identify ryegrass cultivars with contrasting P use efficiency, and to assess their associated biochemical and molecular responses. Nine ryegrass cultivars were hydroponically grown under optimal (0.1 mM) or P-deficient (0.01 mM) conditions, and P uptake, dry biomass, phosphorus acquisition efficiency (PAE) and phosphorus utilization efficiency (PUE) were evaluated. Accordingly, two cultivars with high PAE but low PUE (Ansa and Stellar), and two cultivars with low PAE and high PUE (24Seven and Extreme) were selected to analyze the activity and gene expression of acid phosphatases (APases), as well as the transcript levels of P transporters. Our results showed that ryegrass cultivars with high PAE were mainly influenced by root-related responses, including the expression of genes codifying for the P transporter LpPHT1;4, purple acid phosphatase LpPAP1 and APase activity. Moreover, the traits that contributed greatly to enhanced PUE were the expression of LpPHT1;1/4 and LpPHO1;2, and the APase activity in shoots. These outcomes could be useful to evaluate and develop cultivars with high P-use efficiency, thus contributing to improve the management of P in grassland systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available