4.7 Article

Comparative Transcriptome Profiling Reveals Key MicroRNAs and Regulatory Mechanisms for Aluminum Tolerance in Olive

Journal

PLANTS-BASEL
Volume 12, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/plants12050978

Keywords

Aluminum stress; miRNA; target gene; transcription factor; Olea europaea L

Categories

Ask authors/readers for more resources

Aluminum toxicity is a major constraint to crop production in acidic soils. This study investigated the changes in miRNA expression in the roots of two olive genotypes with contrasting aluminum tolerance. A total of 352 miRNAs were discovered, and 11 miRNAs showed significantly different expression patterns between the tolerant and sensitive genotypes under aluminum stress. In silico prediction identified potential target genes involved in transcriptional regulation, hormone signaling, transportation, and metabolism. These findings provide new insights into the regulatory roles of miRNAs in enhancing aluminum tolerance in olives.
Aluminum toxicity (Al) is one of the major constraints to crop production in acidic soils. MicroRNAs (miRNAs) have emerged as key regulatory molecules at post-transcriptional levels, playing crucial roles in modulating various stress responses in plants. However, miRNAs and their target genes conferring Al tolerance are poorly studied in olive (Olea europaea L.). Here, genome-wide expression changes in miRNAs of the roots from two contrasting olive genotypes Zhonglan (ZL, Al-tolerant) and Frantoio selezione (FS, Al-sensitive) were investigated by high-throughput sequencing approaches. A total of 352 miRNAs were discovered in our dataset, consisting of 196 conserved miRNAs and 156 novel miRNAs. Comparative analyses showed 11 miRNAs have significantly different expression patterns in response to Al stress between ZL and FS. In silico prediction identified 10 putative target gene of these miRNAs, including MYB transcription factors, homeobox-leucine zipper (HD-Zip) proteins, auxin response factors (ARF), ATP-binding cassette (ABC) transporters and potassium efflux antiporter. Further functional classification and enrichment analysis revealed these Al-tolerance associated miRNA-mRNA pairs are mainly involved in transcriptional regulation, hormone signaling, transportation and metabolism. These findings provide new information and perspectives into the regulatory roles of miRNAs and their target for enhancing Al tolerance in olives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available