4.7 Article

Response of Soil Microenvironment and Crop Growth to Cyclic Irrigation Using Reclaimed Water and Brackish Water

Journal

PLANTS-BASEL
Volume 12, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/plants12122285

Keywords

antioxidation property; brackish water; reclaimed water; cyclic irrigation; secondary soil salinization

Categories

Ask authors/readers for more resources

The study explored the effects of the irrigation cycle using reclaimed water and brackish water (RBCI) on soil microenvironments, crop growth, physiological characteristics, and antioxidation properties. The results showed that RBCI could alleviate the risk of soil salinization and did not significantly affect crop yield. It was recommended to use the irrigation cycle of reclaimed-reclaimed-brackish water at 3 g·L-1.
The scarcity of freshwater resources has increased the use of nonconventional water resources such as brackish water, reclaimed water, etc., especially in water-scarce areas. Whether an irrigation cycle using reclaimed water and brackish water (RBCI) poses a risk of secondary soil salinization to crop yields needs to be studied. Aiming to find an appropriate use for different nonconventional water resources, pot experiments were conducted to study the effects of RBCI on soil microenvironments, growth, physiological characteristics and antioxidation properties of crops. The results showed the following: (1) compared to FBCI, the soil moisture content was slightly higher, without a significant difference, while the soil EC, sodium and chloride ions contents increased significantly under the RBCI treatment. With an increase in the reclaimed water irrigation frequency (Tri), the contents of EC, Na+ and Cl- in the soil decreased gradually, and the difference was significant; the soil moisture content also decreased gradually. (2) There were different effects of the RBCI regime on the soil's enzyme activities. With an increase in the Tri, the soil urease activity indicated a significant upward trend as a whole. (3) RBCI can alleviate the risk of soil salinization to some extent. The soil pH values were all below 8.5, and were without a risk of secondary soil alkalization. The ESP did not exceed 15 percent, and there was no possible risk of soil alkalization except that the ESP in soil irrigated by brackish water irrigation went beyond the limit of 15 percent. (4) Compared with FBCI, no obvious changes appeared to the aboveground and underground biomasses under the RBCI treatment. The RBCI treatment was conducive to increasing the aboveground biomass compared with pure brackish water irrigation. Therefore, short-term RBCI helps to reduce the risk of soil salinization without significantly affecting crop yield, and the irrigation cycle using reclaimed-reclaimed-brackish water at 3 g & BULL;L-1 was recommended, according to the experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available