4.6 Article

The Plasmidomic Landscape of Clinical Methicillin-Resistant Staphylococcus aureus Isolates from Malaysia

Journal

ANTIBIOTICS-BASEL
Volume 12, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/antibiotics12040733

Keywords

multidrug resistant MRSA; plasmids; plasmid mobilization; replicon; resistance; whole genome sequencing

Ask authors/readers for more resources

This study analyzed the genomic content of Methicillin-resistant Staphylococcus aureus (MRSA) isolates from Terengganu, Malaysia. The majority of the isolates harbored 1-4 plasmids, with a total of 189 plasmid sequences identified. Resistance genes were found in 74% of these plasmids. The results provide important insights into the plasmidomic landscape of Malaysian MRSA isolates.
Methicillin-resistant Staphylococcus aureus (MRSA) is a priority nosocomial pathogen with plasmids playing a crucial role in its genetic adaptability, particularly in the acquisition and spread of antimicrobial resistance. In this study, the genome sequences of 79 MSRA clinical isolates from Terengganu, Malaysia, (obtained between 2016 and 2020) along with an additional 15 Malaysian MRSA genomes from GenBank were analyzed for their plasmid content. The majority (90%, 85/94) of the Malaysian MRSA isolates harbored 1-4 plasmids each. In total, 189 plasmid sequences were identified ranging in size from 2.3 kb to ca. 58 kb, spanning all seven distinctive plasmid replication initiator (replicase) types. Resistance genes (either to antimicrobials, heavy metals, and/or biocides) were found in 74% (140/189) of these plasmids. Small plasmids (<5 kb) were predominant (63.5%, 120/189) with a RepL replicase plasmid harboring the ermC gene that confers resistance to macrolides, lincosamides, and streptogramin B (MLSB) identified in 63 MRSA isolates. A low carriage of conjugative plasmids was observed (n = 2), but the majority (64.5%, 122/189) of the non-conjugative plasmids have mobilizable potential. The results obtained enabled us to gain a rare view of the plasmidomic landscape of Malaysian MRSA isolates and reinforces their importance in the evolution of this pathogen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available