4.7 Article

Geographical Classification of Saffron (Crocus Sativus L.) Using Total and Synchronous Fluorescence Combined with Chemometric Approaches

Journal

FOODS
Volume 12, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/foods12091747

Keywords

saffron; synchronous fluorescence; emission-excitation matrix; geographical classification; principal component analysis; linear discriminant analysis

Ask authors/readers for more resources

This study used fluorescence spectroscopy and synchronous fluorescence techniques to differentiate the geographical origins of saffron from Taroudant, Ouarzazate, and Azilal in Morocco. Unique fingerprints were assigned to Afghan, Iranian, and Moroccan saffron, allowing for successful classification using principal component analysis and linear discriminant analysis.
There is an increasing interest in food science for high-quality natural products with a distinct geographical origin, such as saffron. In this work, the excitation-emission matrix (EEM) and synchronous fluorescence were used for the first time to geographically discriminate between Moroccan saffron from Taroudant, Ouarzazate, and Azilal. Moreover, to differentiate between Afghan, Iranian, and Moroccan saffron, a unique fingerprint was assigned to each sample by visualizing the EEM physiognomy. Moreover, principal component analysis (LDA) and linear discriminant analysis (LDA) were successfully applied to classify the synchronous spectra of samples. High fluorescence intensities were registered for Ouarzazate and Taroudant saffron. Yet, the Azilal saffron was distinguished by its low intensities. Furthermore, Moroccan, Afghan, and Iranian saffron were correctly assigned to their origins using PCA and LDA for different offsets (??) (20-250 nm) such that the difference in the fluorescence composition of the three countries' saffron was registered in the following excitation/emission ranges: 250-325 nm/300-480 nm and 360-425 nm/500-550 nm. These regions are characterized by the high polyphenolic content of Moroccan saffron and the important composition of Afghan saffron, including vitamins and terpenoids. However, weak intensities of these compounds were found in Iranian saffron. Furthermore, a substantial explained variance (97-100% for PC1 and PC2) and an important classification rate (70-90%) were achieved. Thus, the non-destructive applied methodology of discrimination was rapid, straightforward, reliable, and accurate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available