4.7 Article

Development of a Rapid and Non-Destructive Method for the Detection of Water Addition in Octopus Species (Octopus vulgaris and Eledone cirrhosa) Using Time Domain Reflectometry (TDR)

Journal

FOODS
Volume 12, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/foods12071461

Keywords

rapid methods; dielectric properties; water addition; fraud; cephalopods

Ask authors/readers for more resources

Consumer expectations of octopus quality are often not met due to excessive weight loss after cooking. A rapid and non-destructive method using time domain reflectometry (TDR) was developed to control water addition. Results showed that immersion in freshwater increased the weight and cooking losses of octopus, potentially misleading consumers.
Consumer expectations regarding the quality of octopus are often frustrated and dissatisfaction is frequent, namely due to the excessive reduction in weight after cooking. Therefore, a rapid and non-destructive method based in time domain reflectometry (TDR) was developed for the control of water added to octopus (Octopus vulgaris and Eledone cirrhosa). O. vulgaris had significant higher values of moisture content, moisture/protein ratio, and cooking loss than E. cirrhosa. Immersion in freshwater increased the weight of O. vulgaris in ca. 32% after 32 h, and of E. cirrhosa in ca. 21% after 36 h, and cooking losses increased about 13.9% and 26.1%, respectively. The results reveal how consumers can be misled by abusive water addition. Changes in electrical conductivity and TDR curves were linked with the increasing incorporation of water and dilution effect of salts from octopus muscle. TDR technology and linear discriminant analysis were combined to detect added water in octopus. The classification model developed was cross-validated and 98.6% of samples were correctly classified. The method can be used to proof the authenticity of octopus (O. vulgaris and E. cirrhosa) or to detect fraudulent practices regarding added water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available