4.7 Article

Influence of Fermentation Container Type on Chemical and Microbiological Parameters of Spontaneously Fermented Cow and Goat Milk

Journal

FOODS
Volume 12, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/foods12091836

Keywords

goat milk; cow milk; spontaneous fermentation; microbiota; fatty acids; phenolic acids; physicochemical properties

Ask authors/readers for more resources

This research compared the physicochemical properties, fatty acids, phenolic acids, and microbiota of fermented goat and cow milk. The results showed significant differences between the two types of milk in these parameters, highlighting the need for further investigation into fermented goat milk.
Fermented goat milk is an artisanal beverage with excellent nutritional properties. There are limited data on its physicochemical properties, fatty acids, phenolic acids, and on any insight on microbiota. The aim of this research was to conduct a pilot study to compare these parameters in raw cow and goat milk before and after spontaneous fermentation in a clay pot and glass container at 37 degrees C for 24 h. Both types of milk and fermentation containers significantly affected the pH, acidity, proximate composition, viscosity, and whiteness index of fermented milks. A total of 17 fatty acids were identified in fermented milks, where palmitic, stearic, and myristic were the main saturated acids, and oleic and linoleic acids were the main unsaturated ones. These profiles were primarily influenced by the type of raw milk used. Three to five phenolic acids were identified in fermented milks, where quinic acid was the major phenolic compound, and salviolinic acid was identified only in raw goat milk. Preliminary metataxonomic sequencing analysis showed that the genera Escherichia spp. and Streptococcus spp. were part of the microbiota of both fermented milks, with the first genus being the most abundant in fermented goat milk, and Streptococcus in cow's milk. Moreover, Escherichia abundance was negatively correlated with the abundance of many genera, including Lactobacillus. Overall, the results of this pilot study showed significant variations between the physicochemical properties, the fatty and phenolic acids, and the microbial communities of goat and cow fermented milk, showing the opportunity to further investigate the tested parameters in fermented goat milk to promote its production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available