4.6 Article

Machine Learning Methods Improve Specificity in Newborn Screening for Isovaleric Aciduria

Journal

METABOLITES
Volume 13, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/metabo13020304

Keywords

data analysis; artificial intelligence; data mining; isovaleric acidemia; neonatal screening; inborn error of metabolism

Ask authors/readers for more resources

Isovaleric aciduria (IVA) is a rare disorder of leucine metabolism that is included in newborn screening programs worldwide. However, the effectiveness of IVA screening is hindered by the identification of individuals with a milder variant of the disease and an increasing number of false positive results. In this study, machine learning methods were used to improve the classification of IVA, resulting in a significant reduction in false positive rates while maintaining high sensitivity.
Isovaleric aciduria (IVA) is a rare disorder of leucine metabolism and part of newborn screening (NBS) programs worldwide. However, NBS for IVA is hampered by, first, the increased birth prevalence due to the identification of individuals with an attenuated disease variant (so-called mild IVA) and, second, an increasing number of false positive screening results due to the use of pivmecillinam contained in the medication. Recently, machine learning (ML) methods have been analyzed, analogous to new biomarkers or second-tier methods, in the context of NBS. In this study, we investigated the application of machine learning classification methods to improve IVA classification using an NBS data set containing 2,106,090 newborns screened in Heidelberg, Germany. Therefore, we propose to combine two methods, linear discriminant analysis, and ridge logistic regression as an additional step, a digital-tier, to traditional NBS. Our results show that this reduces the false positive rate by 69.9% from 103 to 31 while maintaining 100% sensitivity in cross-validation. The ML methods were able to classify mild and classic IVA from normal newborns solely based on the NBS data and revealed that besides isovalerylcarnitine (C5), the metabolite concentration of tryptophan (Trp) is important for improved classification. Overall, applying ML methods to improve the specificity of IVA could have a major impact on newborns, as it could reduce the newborns' and families' burden of false positives or over-treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available