4.7 Article

Dynamic pricing and energy management of hydrogen-based integrated energy service provider considering integrated demand response with a bi-level approach

Journal

JOURNAL OF ENERGY STORAGE
Volume 59, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.est.2022.106558

Keywords

Energy pricing; Energy management; Power to gas; Carbon capture and storage; Hydrogen; Integrated demand response

Categories

Ask authors/readers for more resources

This paper establishes an operational framework for an integrated energy system, including power to gas, fuel cell, and carbon capture system. Through a bilevel energy trading mode, it achieves both the benefits for the integrated energy service provider and users, as well as peak cutting and valley filling, and improves the flexibility of the system operation. Simulation results show significant advantages in terms of system operation and user costs, as well as a balance between carbon emissions mitigation and economic benefits.
Integrated energy system with a large-scale integration of renewable energy has witnessed an enormous growth recently. Besides, traditional electric demand response has gradually developed into integrated demand response (IDR). However, the renewable energy curtailment becomes a prominent problem. In addition, a reasonable trading mode between integrated energy service provider (IESP) and demander is required to ensure the benefits of both sides. To the end, the operation framework of an IESP comprising power to gas, fuel cell (FC) and carbon capture system (CCS) is established in the paper. Then the bilevel energy trading mode between IESP and users is proposed, wherein the upper level considers the IESP profit maximization while the lower level is to minimize consumers' cost. By utilizing Karush-Kuhn Tucker optimality condition and strong duality theory, the two-level model is recast into a tractable single-level mixed integer programming model. The simulation results show that: corresponding to the models with removing bilevel trading, IDR, FC and CCS, as well as CCS, 1) the formulated price can achieve peak cutting and valley filling, as well as improve the flexibility of the system operation. 2) the IESP and users can take benefit in the proposed model. For IESP, profit experiences an increase with a rate by 20.41 %, 3.2 % -16.8 % and - 15.9 %. For demander, cost witnesses a decline by 4.07 %, 3.69 %, 1.12 % and 0.89 %. 3) In terms of environmental benefit, the proposed model can not only achieve a carbon emissions mitigation but also maintain a relatively reasonable and acceptable economic advantage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available