4.6 Article

Guiding protein design choices by per-residue energy breakdown analysis with an interactive web application

Journal

FRONTIERS IN MOLECULAR BIOSCIENCES
Volume 10, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmolb.2023.1178035

Keywords

protein design; energy calculation; amino acid interaction; web application (app); machine learning

Ask authors/readers for more resources

Recent developments in machine learning have led to significant progress in protein design. However, accurately evaluating the contributions of amino acid mutations to protein stability remains challenging. This study presents an interactive workflow called ENDURE that assesses the energetic effects of single and multiple mutations in proteins. ENDURE integrates various algorithms to analyze energy contributions and provides a web application for easy interpretation and visualization. The tool effectively identified mutations that improved the thermodynamic stability of a designed PET-degrading enzyme. Overall, ENDURE is a valuable resource for protein design and optimization researchers and practitioners.
Recent developments in machine learning have greatly facilitated the design of proteins with improved properties. However, accurately assessing the contributions of an individual or multiple amino acid mutations to overall protein stability to select the most promising mutants remains a challenge. Knowing the specific types of amino acid interactions that improve energetic stability is crucial for finding favorable combinations of mutations and deciding which mutants to test experimentally. In this work, we present an interactive workflow for assessing the energetic contributions of single and multi-mutant designs of proteins. The energy breakdown guided protein design (ENDURE) workflow includes several key algorithms, including per-residue energy analysis and the sum of interaction energies calculations, which are performed using the Rosetta energy function, as well as a residue depth analysis, which enables tracking the energetic contributions of mutations occurring in different spatial layers of the protein structure. ENDURE is available as a web application that integrates easy-to-read summary reports and interactive visualizations of the automated energy calculations and helps users selecting protein mutants for further experimental characterization. We demonstrate the effectiveness of the tool in identifying the mutations in a designed polyethylene terephthalate (PET)-degrading enzyme that add up to an improved thermodynamic stability. We expect that ENDURE can be a valuable resource for researchers and practitioners working in the field of protein design and optimization. ENDURE is freely available for academic use at: .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available