4.6 Article

Molecular Characterization of Staphylococcus aureus Isolated from Raw Milk and Humans in Eastern Tanzania: Genetic Diversity and Inter-Host Transmission

Journal

MICROORGANISMS
Volume 11, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms11061505

Keywords

Staphylococcus aureus; antibiotic resistance; genotyping; whole genome sequencing; virulence factors; asymptomatic mastitis; Tanzania

Categories

Ask authors/readers for more resources

This study genetically characterized a collection of S. aureus isolates recovered from milk and nasal swabs from humans and animals. The findings revealed the presence of antibiotic resistance and virulence genes, as well as the potential transmission between humans and animals.
Staphylococcus aureus is a common cause of infection in humans and animals, including bovine mastitis, globally. The objective of this study was to genetically characterize a collection of S. aureus isolates recovered from milk and nasal swabs from humans with and without animal contact (bovine = 43, human = 12). Using whole genome sequencing (NextSeq550), isolates were sequence typed, screened for antimicrobial resistance and virulence genes and examined for possible inter-species host transmission. Multi locus sequence typing (MLST) and single nucleotide polymorphism (SNP)-based phylogeny revealed 14 different sequence types, including the following six novel sequence types: ST7840, 7841, 7845, 7846, 7847, and 7848. The SNP tree confirmed that MLST clustering occurred most commonly within CC97, CC5477, and CC152. ResFinder analysis revealed five common antibiotic resistance genes, namely tet(K), blaZ, dfrG, erm & COPY;, and str, encoding for different antibiotics. mecA was discovered in one human isolate only. Multidrug resistance was observed in 25% of the isolates, predominantly in CC152 (7/8) and CC121 (3/4). Known bovine S. aureus (CC97) were collected in humans and known human S. aureus lineages (CC152) were collected in cattle; additionally, when these were compared to bovine-isolated CC97 and human-isolated CC152, respectively, no genetic distinction could be observed. This is suggestive of inter-host transmission and supports the need for surveillance of the human-animal interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available