4.6 Article

Pangenomic Study of Fusobacterium nucleatum Reveals the Distribution of Pathogenic Genes and Functional Clusters at the Subspecies and Strain Levels

Journal

MICROBIOLOGY SPECTRUM
Volume 11, Issue 3, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.05184-22

Keywords

Fusobacterium nucleatum; pangenomic study; virulence factors; CRISPR types; secondary metabolite biosynthetic gene clusters

Categories

Ask authors/readers for more resources

This study analyzed the genomic characteristics and pathogenic effectors of F. nucleatum strains, revealing similarities and differences in functional gene compositions and virulence factors among different subspecies/strains of the same oral pathogen. The findings suggest that different strains of F. nucleatum may vary greatly in terms of their pathogenicity, highlighting the importance of considering subspecies/strains in microbial pathogenicity studies.
Fusobacterium nucleatum is a prevalent periodontal pathogen and is associated with many systemic diseases. Our knowledge of the genomic characteristics and pathogenic effectors of different F. nucleatum strains is limited. In this study, we completed the whole genome assembly of the 4 F. nucleatum strains and carried out a comprehensive pangenomic study of 30 strains with their complete genome sequences. Phylogenetic analysis revealed that the F. nucleatum strains are mainly divided into 4 subspecies, while 1 of the sequenced strains was classified into a new subspecies. Gene composition analysis revealed that a total of 517 core/soft-core genes with housekeeping functions widely distributed in almost all the strains. Each subspecies had a unique gene cluster shared by strains within the subspecies. Analysis of the virulence factors revealed that many virulence factors were widely distributed across all the strains, with some present in multiple copies. Some virulence genes showed no consistent occurrence rule at the subspecies level and were specifically distributed in certain strains. The genomic islands mainly revealed strain-specific characteristics instead of subspecies level consistency, while CRISPR types and secondary metabolite biosynthetic gene clusters were identically distributed in F. nucleatum strains from the same subspecies. The variation in amino acid sites in the adhesion protein FadA did not affect the monomer and dimer 3D structures, but it may affect the binding surface and the stability of binding to host receptors. This study provides a basis for the pathogenic study of F. nucleatum at the subspecies and strain levels. IMPORTANCE We used F. nucleatum as an example to analyze the genomic characteristics of oral pathogens at the species, subspecies, and strain levels and elucidate the similarities and differences in functional genes and virulence factors among different subspecies/strains of the same oral pathogen. We believe that the unique biological characteristics of each subspecies/strain can be attributed to the differences in functional gene clusters or the presence/absence of certain virulence genes. This study showed that F. nucleatum strains from the same subspecies had similar functional gene compositions, CRISPR types, and secondary metabolite biosynthetic gene clusters, while pathogenic genes, such as virulence genes, antibiotic resistance genes, and GIs, had more strain level specificity. The findings of this study suggest that, for microbial pathogenicity studies, we should carefully consider the subspecies/strains being used, as different strains may vary greatly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available