4.6 Article

Attention-Guided Transfer Learning for Identification of Filamentous Fungi Encountered in the Clinical Laboratory

Journal

MICROBIOLOGY SPECTRUM
Volume 11, Issue 3, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.04611-22

Keywords

convolutional neural network; transfer learning; attention; filamentous fungi

Categories

Ask authors/readers for more resources

This study utilizes transfer learning with CNNs to classify fungal genera and identify Aspergillus species using microscopic images. With the involvement of medical technologists, the study achieved high classification accuracy and highlights the potential of merging advanced technology with medical laboratory practices.
This study utilizes transfer learning with CNNs to classify fungal genera and identify Aspergillus species using microscopic images from touch-tape preparation and lactophenol cotton blue staining. The training and test data sets included 4,108 images with representative microscopic morphology for each genus, and a soft attention mechanism was incorporated to enhance classification accuracy. This study addresses the challenge of accurately identifying filamentous fungi in medical laboratories using transfer learning with convolutional neural networks (CNNs). The study uses microscopic images from touch-tape slides with lactophenol cotton blue staining, the most common method in clinical settings, to classify fungal genera and identify Aspergillus species. The training and test data sets included 4,108 images with representative microscopic morphology for each genus, and a soft attention mechanism was incorporated to enhance classification accuracy. As a result, the study achieved an overall classification accuracy of 94.9% for four frequently encountered genera and 84.5% for Aspergillus species. One of the distinct features is the involvement of medical technologists in developing a model that seamlessly integrates into routine workflows. In addition, the study highlights the potential of merging advanced technology with medical laboratory practices to diagnose filamentous fungi accurately and efficiently.IMPORTANCE This study utilizes transfer learning with CNNs to classify fungal genera and identify Aspergillus species using microscopic images from touch-tape preparation and lactophenol cotton blue staining. The training and test data sets included 4,108 images with representative microscopic morphology for each genus, and a soft attention mechanism was incorporated to enhance classification accuracy. As a result, the study achieved an overall classification accuracy of 94.9% for four frequently encountered genera and 84.5% for Aspergillus species. One of the distinct features is the involvement of medical technologists in developing a model that seamlessly integrates into routine workflows. In addition, the study highlights the potential of merging advanced technology with medical laboratory practices to diagnose filamentous fungi accurately and efficiently.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available