4.7 Article

Albumin-bound kynurenic acid is an appropriate endogenous biomarker for assessment of the renal tubular OATs-MRP4 channel

Journal

JOURNAL OF PHARMACEUTICAL ANALYSIS
Volume 13, Issue 10, Pages 1205-1220

Publisher

ELSEVIER
DOI: 10.1016/j.jpha.2023.05.007

Keywords

Transporter; Biomarker; Kynurenic acid; Renal tubular excretion

Ask authors/readers for more resources

In this study, albumin-bound kynurenic acid was identified as an endogenous biomarker for the renal tubular OATs-MRP4 channel. It can be used to adjust the dosage of drugs secreted by this channel or predict kidney injury.
Renal tubular secretion mediated by organic anion transporters (OATs) and the multidrug resistance-associated protein 4 (MRP4) is an important means of drug and toxin excretion. Unfortunately, there are no biomarkers to evaluate their function. The aim of this study was to identify and characterize an endogenous biomarker of the renal tubular OATs-MRP4 channel. Twenty-six uremic toxins were selected as candidate compounds, of which kynurenic acid was identified as a potential biomarker by assessing the protein-binding ratio and the uptake in OAT1-, OAT3-, and MRP4-overexpressing cell lines. OAT1/3 and MRP4 mediated the transcellular vectorial transport of kynurenic acid in vitro. Serum kynurenic acid concentration was dramatically increased in rats treated with a rat OAT1/3 (rOAT1/3) inhibitor and in rOAT1/3 double knockout (rOAT1/3-/-) rats, and the renal concentrations were markedly elevated by the rat MRP4 (rMRP4) inhibitor. Kynurenic acid was not filtered at the glomerulus (99% of albumin binding), and was specifically secreted in renal tubules through the OAT1/3-MRP4 channel with an appropriate affinity (Km) (496.7 mM and 382.2 mM for OAT1 and OAT3, respectively) and renal clearance half-life (t1/2) in vivo (3.7 +/- 0.7 h). There is a strong correlation in area under the plasma drug concentration-time curve (AUC0-t) between cefmetazole and kynurenic acid, but not with creatinine, after inhibition of rOATs. In addition, the phase of increased kynurenic acid level is earlier than that of creatinine in acute kidney injury process. These results suggest that albumin-bound kynurenic acid is an appropriate endogenous biomarker for adjusting the dosage of drugs secreted by this channel or predicting kidney injury.(c) 2023 The Author(s). Published by Elsevier B.V. on behalf of Xi'an Jiaotong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available