4.7 Article

A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces

Journal

VIRTUAL AND PHYSICAL PROTOTYPING
Volume 18, Issue 1, Pages -

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17452759.2023.2203701

Keywords

Negative Poisson's ratio; tubular structure; triply periodic minimal surface; compressive properties; finite element modelling

Ask authors/readers for more resources

A novel type of tubular structure with negative Poisson's ratio based on gyroid-type TPMSs is proposed and investigated in this study. The compressive behaviors of the fabricated tubular structures are studied using experimental and numerical methods. The proposed method shows excellent potential for guiding the design and optimization of auxetic tubular structures.
A novel type of tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces (TPMSs) is proposed in this study. This work is an attempt to design auxetic tubular structures based on TPMS. A series of auxetic tubular structures were designed and then fabricated using laser power bed fusion. Compressive behaviours of the fabricated auxetic tubular structures were investigated using experimental and numerical methods. To obtain optimal designs of tubular structures with controllable auxetic properties, the influence of several parameters were investigated comprehensively. Subsequently, several graded auxetic tubular structures were designed based on the parametric analysis and studied numerically. The mechanical properties of the tubular structures could be controlled effectively using the proposed approach. The proposed method can be used for guiding the design and optimisation of auxetic tubular structures, showing excellent potential for various applications such as biomedical devices, vehicle crashworthiness, and protective engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available