4.7 Article

Shotgun Metagenomics of Gastric Biopsies Reveals Compositional and Functional Microbiome Shifts in High- and Low-Gastric-Cancer-Risk Populations from Colombia, South America

Journal

GUT MICROBES
Volume 15, Issue 1, Pages -

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/19490976.2023.2186677

Keywords

Helicobacter pylori; gastric cancer; gastric microbiome; whole metagenomic shotgun sequencing; 16S rRNA sequencing

Ask authors/readers for more resources

In this study, whole metagenomic shotgun sequencing (WMS) was used to survey the microbiome in gastric biopsy samples from high-risk and low-risk gastric cancer towns in Colombia. WMS demonstrated its capability to identify and characterize bacterial taxa and functional profiles of the gastric microbiome, with advantages over traditional culture and 16S rRNA sequencing. WMS detected more bacterial taxa and risk factors for H. pylori-associated gastric disease compared to other sequencing approaches.
Along with Helicobacter pylori infection, the gastric microbiota is hypothesized to modulate stomach cancer risk in susceptible individuals. Whole metagenomic shotgun sequencing (WMS) is a sequencing approach to characterize the microbiome with advantages over traditional culture and 16S rRNA sequencing including identification of bacterial and non-bacterial taxa, species/strain resolution, and functional characterization of the microbiota. In this study, we used WMS to survey the microbiome in extracted DNA from antral gastric biopsy samples from Colombian patients residing in the high-risk gastric cancer town Tuquerres (n = 10, H. pylori-positive = 7) and low-risk town of Tumaco (n = 10, H. pylori-positive = 6). Kraken2/Bracken was used for taxonomic classification and abundance. Functional gene profiles were inferred by InterProScan and KEGG analysis of assembled contigs and gene annotation. The most abundant taxa represented bacteria, non-human eukaryota, and viral genera found in skin, oral, food, and plant/soil environments including Staphylococus, Streptococcus, Bacillus, Aspergillus, and Siphoviridae. H. pylori was the predominant taxa present in H. pylori-positive samples. Beta diversity was significantly different based on H. pylori-status, risk group, and sex. WMS detected more bacterial taxa than 16S rRNA sequencing and aerobic, anaerobic, and microaerobic culture performed on the same gastric biopsy samples. WMS identified significant differences in functional profiles found between H. pylori-status, but not risk or sex groups. H. pylori-positive samples were significantly enriched for H. pylori-specific genes including virulence factors such as vacA, cagA, and urease, while carbohydrate and amino acid metabolism genes were enriched in H. pylori-negative samples. This study shows WMS has the potential to characterize the taxonomy and function of the gastric microbiome as risk factors for H. pylori-associated gastric disease. Future studies will be needed to compare and validate WMS versus traditional culture and 16S rRNA sequencing approaches for characterization of the gastric microbiome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available