4.7 Article

Rice Yield and Greenhouse Gas Emissions Due to Biochar and Straw Application under Optimal Reduced N Fertilizers in a Double Season Rice Cropping System

Journal

AGRONOMY-BASEL
Volume 13, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy13041023

Keywords

biochar; straw; nitrogen fertilizer; CH4; N2O

Ask authors/readers for more resources

This study investigated the effects of straw and biochar on greenhouse gas emissions and grain yield in a double rice cropping system under optimal nitrogen fertilizer reduction. The application of straw and biochar significantly reduced methane and nitrous oxide emissions, increased grain yield, and reduced greenhouse gas emissions intensity.
This study aimed to investigate the impacts of straw and biochar on greenhouse gas (GHG) emissions and grain yield in a double rice cropping system under optimal N fertilizer reduction. Conventional fertilization (CF) was used as the control group, and treatments included optimal fertilization and 15% less nitrogen (OF), together with straw (S) or biochar (B) applied under different fertilization conditions, namely CF + S, CF + B, OF + S, and OF + B. The effects of treatments on soil CH4 and N2O emissions were studied, and changes in soil physicochemical properties were analyzed. The results showed that relative to CF, CF + S and OF + S increased the cumulative CH4 emissions by 11.80% and 2.35%, respectively, while CF + B and OF + B resulted in significant reductions in cumulative CH4 emissions by 27.80% and 28.46%, respectively. Biochar was effective in reducing N2O emissions, and OF further increased the potential, with CF + B and OF + B achieving the best N2O reductions of 30.56% and 32.21%, respectively. Although OF reduced yields by 0.16%, this difference was within reasonable limits; the remaining treatments increased grain yields by 2.55% to 3.47%. CF + B and OF + B reduced the global warming potential (GWP) by 27.93% and 28.63%, respectively, and ultimately reduced the greenhouse gas emission intensity (GHGI) by 30.42% and 30.97%. Both straw and biochar increased the soil organic matter, NH4+-N, and NO3--N contents, and biochar increased the soil pH, which may be the potential mechanism regulating soil GHG emissions. Overall, OF + B is beneficial for reducing GHG emissions and may be a better agronomic cropping pattern in double season rice growing areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available