4.7 Article

Metabolic, Nutritional and Morphophysiological Behavior of Eucalypt Genotypes Differing in Dieback Resistance in Field When Submitted to PEG-Induced Water Deficit

Journal

AGRONOMY-BASEL
Volume 13, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy13051261

Keywords

water drought; metabolic adjustment; physiological disorder; plant growth

Ask authors/readers for more resources

In this study, four commercial eucalyptus clones were evaluated for their response to water stress. The results showed that SuzT clone exhibited higher carbon accumulation and water use efficiency, indicating its better adaptation to drought conditions.
Dieback is a physiological disorder that has caused losses on eucalyptus plantations. Thinking that water stress is one of the triggers for the physiological disorder and aiming at the early identification of tolerant genotypes, we evaluated plantlets of four commercial clones with divergent behavior in field conditions. The plantlets were grown in a greenhouse where the drought conditions were provided by the application of polyethylene glycol 6000 solutions at 100 and 300 g L-1. After water deficit treatments, the morphological, physiological, nutritional and metabolic analyses were performed. SuzT maintained the carbon fixation and the instantaneous water use efficiency, even under water deficit, while sustaining growth. This resulted in higher leaf area and total dry mass in SuzT. Despite higher photosynthetic rate, SuzS exhibited reduced dry biomass accumulation, implying less efficient carbon use. SuzT revealed a higher level of calcium that supports cell structure and homeostasis and indicates higher capacity to manage specific resources and survival under water deficit. SuzT suffered reduction in some free amino acids; however, there was no significant variation for total amino acid content. The principal component and cluster analyses indicated that SuzMT and SuzTP genotypes behave similarly to SuzT under water deficit, while SuzS clustered in isolation. Our results support that there are common trends in water deficit responses for contrasting eucalypt genotypes. The existence of other strategies coping with water deficit resistance is not discarded and should be further evaluated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available