4.7 Review

Molecular Cytogenetics in Domestic Bovids: A Review

Journal

ANIMALS
Volume 13, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/ani13050944

Keywords

animal cytogenetics; cattle; river buffalo; sheep; goat; FISH mapping; PCR

Ask authors/readers for more resources

The use of molecular cytogenetics, especially fluorescence in situ hybridization (FISH), has greatly enhanced the understanding of chromosomes in domestic animals. It has been applied to create physical maps of specific DNA sequences, confirm chromosome abnormalities, anchor genetic maps, compare different species, study meiotic segregation, demonstrate conserved or lost DNA sequences, predict chromosome regions, and study genomic stability. This review focuses on the important applications of molecular cytogenetics using FISH mapping in domestic bovids.
Simple Summary Molecular cytogenetics, and particularly the use of fluorescence in situ hybridization (FISH), has allowed deeper investigation of the chromosomes of domestic animals in order to: (a) create physical maps of specific DNA sequences on chromosome regions; (b) use specific chromosome markers to confirm the identification of chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchor radiation hybrid and genetic maps to specific chromosome regions; (d) better compare related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) study meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better show conserved or lost DNA sequences in chromosome abnormalities; (g) use informatic and genomic reconstructions, in addition to CGH arrays in related species, to predict conserved or lost chromosome regions; and (h) study some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications. The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available