4.6 Article

A User Purchase Behavior Prediction Method Based on XGBoost

Journal

ELECTRONICS
Volume 12, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/electronics12092047

Keywords

user behavior prediction; feature selection; XGBoost model

Ask authors/readers for more resources

In this paper, a prediction model based on XGBoost is proposed to predict user purchase behavior. By utilizing multi-feature fusion and analyzing feature importance, the XGBoost model demonstrates superior stability and algorithm efficiency compared to traditional machine learning algorithms.
With the increasing use of electronic commerce, online purchasing users have been rapidly rising. Predicting user behavior has therefore become a vital issue based on the collected data. However, traditional machine learning algorithms for prediction require significant computing time and often produce unsatisfactory results. In this paper, a prediction model based on XGBoost is proposed to predict user purchase behavior. Firstly, a user value model (LDTD) utilizing multi-feature fusion is proposed to differentiate between user types based on the available user account data. The multi-feature behavior fusion is carried out to generate the user tag feature according to user behavior patterns. Next, the XGBoost feature importance model is employed to analyze multi-dimensional features and identify the model with the most significant weight value as the key feature for constructing the model. This feature, together with other user features, is then used for prediction via the XGBoost model. Compared to existing machine learning models such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Back Propagation Neural Network (BPNN), the eXtreme Gradient Boosting (XGBoost) model outperforms with an accuracy of 0.9761, an F1 score of 0.9763, and a ROC value of 0.9768. Thus, the XGBoost model demonstrates superior stability and algorithm efficiency, making it an ideal choice for predicting user purchase behavior with high levels of accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available