4.6 Article

An engineered HIV-1 Gag-based VLP displaying high antigen density induces strong antibody-dependent functional immune responses

Journal

NPJ VACCINES
Volume 8, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41541-023-00648-4

Keywords

-

Ask authors/readers for more resources

This study engineered a HIV-1 Gag-based VLP platform with increased antigen density on the surface, resulting in highly immunogenic MinGag-VLPs. Immunization with these VLPs induced strong humoral responses and demonstrated functional effects in halting tumor progression in vivo mouse model.
Antigen display on the surface of Virus-Like Particles (VLPs) improves immunogenicity compared to soluble proteins. We hypothesised that immune responses can be further improved by increasing the antigen density on the surface of VLPs. In this work, we report an HIV-1 Gag-based VLP platform engineered to maximise the presence of antigen on the VLP surface. An HIV-1 gp41-derived protein (Min), including the C-terminal part of gp41 and the transmembrane domain, was fused to HIV-1 Gag. This resulted in high-density MinGag-VLPs. These VLPs demonstrated to be highly immunogenic in animal models using either a homologous (VLP) or heterologous (DNA/VLP) vaccination regimen, with the latter yielding 10-fold higher anti-Gag and anti-Min antibody titres. Despite these strong humoral responses, immunisation with MinGag-VLPs did not induce neutralising antibodies. Nevertheless, antibodies were predominantly of an IgG2b/IgG2c profile and could efficiently bind CD16-2. Furthermore, we demonstrated that MinGag-VLP vaccination could mediate a functional effect and halt the progression of a Min-expressing tumour cell line in an in vivo mouse model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available