4.7 Article

New Smart Bioactive and Biomimetic Chitosan-Based Hydrogels for Wounds Care Management

Journal

PHARMACEUTICS
Volume 15, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics15030975

Keywords

smart hydrogels; oxidized chitosan; oxidized hyaluronic acid; nontoxic crosslinkers; APIs; wound healing; self healing; self adapting

Ask authors/readers for more resources

This study developed new smart chitosan-based hydrogels using oxidized chitosan and hyaluronic acid as nontoxic crosslinkers. The hydrogels exhibited self-healing and self-adapting properties due to the presence of dynamic imino bonds. Additionally, the hydrogels showed potential as effective materials in wound management with their drug delivery and antimicrobial effects.
Wound management represents a continuous challenge for health systems worldwide, considering the growing incidence of wound-related comorbidities, such as diabetes, high blood pressure, obesity, and autoimmune diseases. In this context, hydrogels are considered viable options since they mimic the skin structure and promote autolysis and growth factor synthesis. Unfortunately, hydrogels are associated with several drawbacks, such as low mechanical strength and the potential toxicity of byproducts released after crosslinking reactions. To overcome these aspects, in this study new smart chitosan (CS)-based hydrogels were developed, using oxidized chitosan (oxCS) and hyaluronic acid (oxHA) as nontoxic crosslinkers. Three active product ingredients (APIs) (fusidic acid, allantoin, and coenzyme Q10), with proven biological effects, were considered for inclusion in the 3D polymer matrix. Therefore, six API-CS-oxCS/oxHA hydrogels were obtained. The presence of dynamic imino bonds in the hydrogels' structure, which supports their self-healing and self-adapting properties, was confirmed by spectral methods. The hydrogels were characterized by SEM, swelling degree, pH, and the internal organization of the 3D matrix was studied by rheological behavior. Moreover, the cytotoxicity degree and the antimicrobial effects were also investigated. In conclusion, the developed API-CS-oxCS/oxHA hydrogels have real potential as smart materials in wound management, based on their self-healing and self-adapting properties, as well as on the benefits of APIs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available