4.7 Article

pH-Responsive Poly(ethylene glycol)-b-poly(2-vinylpyridine) Micelles for the Triggered Release of Therapeutics

Journal

PHARMACEUTICS
Volume 15, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics15030977

Keywords

pH-responsive; micelle; poly(ethylene glycol); poly(2-vinylpyridine); doxorubicin; gossypol; CDKI-73; EPR effect; triggered release; photo-RAFT

Ask authors/readers for more resources

The use of pH-responsive polymeric micelles is a promising approach for targeted drug delivery in cancer cells. However, there is a lack of data on hydrophobic drug compatibility and the relationship between copolymer microstructure and drug compatibility. This study presents a facile synthesis method for diblock copolymers and investigates the encapsulation and release of hydrophobic drugs. The results demonstrate the drug selectivity of the copolymer core and suggest the further investigation of clinically relevant micelle systems.
The use of pH-responsive polymeric micelles is a promising approach to afford the targeted, pH-mediated delivery of hydrophobic drugs within the low-pH tumour milieu and intracellular organelles of cancer cells. However, even for a common pH-responsive polymeric micelle system-e.g., those utilising poly(ethylene glycol)-b-poly(2-vinylpyridine) (PEG-b-PVP) diblock copolymers-there is a lack of available data describing the compatibility of hydrophobic drugs, as well as the relationships between copolymer microstructure and drug compatibility. Furthermore, synthesis of the constituent pH-responsive copolymers generally requires complex temperature control or degassing procedures that limit their accessibility. Herein we report the facile synthesis of a series of diblock copolymers via visible-light-mediated photocontrolled reversible addition-fragmentation chain-transfer polymerisation, with a constant PEG block length (90 repeat units (RUs)) and varying PVP block lengths (46-235 RUs). All copolymers exhibited narrow dispersity values (D <= 1.23) and formed polymeric micelles with low polydispersity index (PDI) values (typically <0.20) at physiological pH (7.4), within a suitable size range for passive tumour targeting (<130 nm). The encapsulation and release of three hydrophobic drugs (cyclin-dependent kinase inhibitor (CDKI)-73, gossypol, and doxorubicin) were investigated in vitro at pH 7.4-4.5 to simulate drug release within the tumour milieu and cancer cell endosome. Marked differences in drug encapsulation and release were observed when the PVP block length was increased from 86 to 235 RUs. With a PVP block length of 235 RUs, the micelles exhibited differing encapsulation and release properties for each drug. Minimal release was observed for doxorubicin (10%, pH 4.5) and CDKI-73 exhibited moderate release (77%, pH 4.5), whereas gossypol exhibited the best combination of encapsulation efficiency (83%) and release (91% pH 4.5) overall. These data demonstrate the drug selectivity of the PVP core, where both the block molecular weight and hydrophobicity of the core (and accordingly the hydrophobicity of the drug) have a significant effect on drug encapsulation and release. These systems remain a promising means of achieving targeted, pH-responsive drug delivery-albeit for select, compatible hydrophobic drugs-which warrants their further investigation to develop and evaluate clinically relevant micelle systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available