4.6 Article

Glycation Leads to Increased Invasion of Glioblastoma Cells

Journal

CELLS
Volume 12, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/cells12091219

Keywords

glycation; invasion; glioblastoma; glioma; astrocytes; methylglyoxal; advanced glycation end-products

Categories

Ask authors/readers for more resources

This study investigated the effects of MGO on GBM cell lines and glioma cell lines, as well as primary human astrocytes. The results showed that MGO caused glycation, accumulation of advanced glycation end-products, and decreased cell viability in all cell lines. Physiological concentrations of MGO increased invasiveness in GBM cell lines and decreased invasiveness in hA. Glycation also had differential effects on ECM components involved in invasion progress. These findings highlight the importance of further research on preventing glycation as a potential therapeutic strategy against glioma and GBM.
Glioblastoma (GBM) is a highly aggressive and invasive brain tumor with a poor prognosis despite extensive treatment. The switch to aerobic glycolysis, known as the Warburg effect, in cancer cells leads to an increased production of methylglyoxal (MGO), a potent glycation agent with pro-tumorigenic characteristics. MGO non-enzymatically reacts with proteins, DNA, and lipids, leading to alterations in the signaling pathways, genomic instability, and cellular dysfunction. In this study, we investigated the impact of MGO on the LN229 and U251 (WHO grade IV, GBM) cell lines and the U343 (WHO grade III) glioma cell line, along with primary human astrocytes (hA). The results showed that increasing concentrations of MGO led to glycation, the accumulation of advanced glycation end-products, and decreasing cell viability in all cell lines. The invasiveness of the GBM cell lines increased under the influence of physiological MGO concentrations (0.3 mmol/L), resulting in a more aggressive phenotype, whereas glycation decreased the invasion potential of hA. In addition, glycation had differential effects on the ECM components that are involved in the invasion progress, upregulating TGF fi, brevican, and tenascin C in the GBM cell lines LN229 and U251. These findings highlight the importance of further studies on the prevention of glycation through MGO scavengers or glyoxalase 1 activators as a potential therapeutic strategy against glioma and GBM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available