4.6 Article

A Three-Dimensional Engineered Cardiac In Vitro Model: Controlled Alignment of Cardiomyocytes in 3D Microphysiological Systems

Journal

CELLS
Volume 12, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/cells12040576

Keywords

3D cell culture; in vitro cardiac model; cardiac cell alignment; 3D hydrogel; decellularized extracellular matrix (ECM); microfabricated grooves

Categories

Ask authors/readers for more resources

Alignment of cardiomyocytes in myocardium tissue is important for the functions of the myocardium. This paper proposes a simple method to align cells in a 3D in vitro heart model using microfabricated PDMS grooves. The functionality of the model was evaluated by comparing beating rates between aligned and non-aligned structures. This model has potential applications in drug screening, tissue engineering, and heart-on-chip studies.
Cardiomyocyte alignment in myocardium tissue plays a significant role in the physiological, electrical, and mechanical functions of the myocardium. It remains, however, difficult to align cardiac cells in a 3D in vitro heart model. This paper proposes a simple method to align cells using microfabricated Polydimethylsiloxane (PDMS) grooves with large dimensions (of up to 350 mu m in width), similar to the dimensions of trabeculae carneae, the smallest functional unit of the myocardium. Two cell groups were used in this work; first, H9c2 cells in combination with Nor10 cells for proof of concept, and second, neonatal cardiac cells to investigate the functionality of the 3D model. This model compared the patterned and nonpatterned 3D constructs, as well as the 2D cell cultures, with and without patterns. In addition to alignment, we assessed the functionality of our proposed 3D model by comparing beating rates between aligned and non-aligned structures. In order to assess the practicality of the model, the 3D aligned structures should be demonstrated to be detachable and alignable. This evaluation is crucial to the use of this 3D functional model in future studies related to drug screening, building blocks for tissue engineering, and as a heart-on-chip by integrating microfluidics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available