4.8 Review

State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths

Journal

LASER & PHOTONICS REVIEWS
Volume 10, Issue 6, Pages 895-921

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/lpor.201600065

Keywords

photodetector; infrared; silicon; optical microcavity; graphene

Ask authors/readers for more resources

Silicon-based technologies provide an ideal platform for the monolithic integration of photonics and microelectronics. In this context, a variety of passive and active silicon photonic devices have been developed to operate at telecom and datacom wavelengths, at which silicon has minimal optical absorption - due to its bandgap of 1.12 eV. Although in principle this transparency window limits the use of silicon for optical detection at wavelengths above 1.1 mu m, in recent years tremendous advances have been made in the field of all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. By taking advantage of emerging materials and novel structures, these devices are becoming competitive with the more well-established technologies, and are opening new and intriguing perspectives. In this paper, a review of the state-of-the-art is presented. Devices based on defect-mediated absorption, two-photon absorption and the internal photoemission effect are reported, their working principles are elucidated and their performance discussed and compared. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available