4.6 Article

Interferon Gamma-Inducible NAMPT in Melanoma Cells Serves as a Mechanism of Resistance to Enhance Tumor Growth

Journal

CANCERS
Volume 15, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/cancers15051411

Keywords

melanoma; NAMPT; interferon gamma

Categories

Ask authors/readers for more resources

The tumor microenvironment comprises immune and tumor cells that interact with each other. Immune cells, through the release of inflammatory cytokines, such as interferons (IFNs), play a role in tumor clearance. However, it has been observed that tumor cells can also exploit IFNs to promote their growth and survival. This study demonstrates that interferon gamma (IFN gamma) induces the expression of NAMPT, an essential enzyme involved in the NAD+ salvage pathway, in melanoma cells. Increased NAMPT levels enhance cell proliferation and survival. Understanding the mechanisms underlying NAMPT regulation could lead to improved therapeutic strategies, particularly in immunotherapies utilizing IFN signaling.
Simple Summary The tumor microenvironment is complex, with interacting immune and tumor cells. Immune cells release inflammatory cytokines, including interferons (IFNs), that drive tumor clearance. However, evidence suggests that tumor cells can also utilize IFNs to enhance growth and survival in certain cases. We demonstrate that interferon gamma (IFN gamma) mediates the metabolic reprogramming of melanoma cells by inducing the essential NAD+ salvage pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT) gene through STAT1 binding to the NAMPT locus. NAMPT is constitutively expressed in cells during normal homeostasis. However, melanoma cells have higher energetic demands and increased NAMPT. We show that IFN gamma signaling upregulates NAMPT in melanoma cells, increasing cell proliferation and survival. Further, STAT1-inducible Nampt promotes melanoma growth in mice. We provide evidence that melanoma cells directly respond to IFN gamma-activated STAT1 by increasing Nampt, which improves their fitness during tumor immunity. Elucidating mechanisms that regulate NAMPT expression can lead to enhanced therapeutic approaches with immunotherapies that utilize IFN signaling to improve patient outcomes. (1) Background: Immune cells infiltrate the tumor microenvironment and secrete inflammatory cytokines, including interferons (IFNs), to drive antitumor responses and promote tumor clearance. However, recent evidence suggests that sometimes, tumor cells can also harness IFNs to enhance growth and survival. The essential NAD+ salvage pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT) gene is constitutively expressed in cells during normal homeostasis. However, melanoma cells have higher energetic demands and elevated NAMPT expression. We hypothesized that interferon gamma (IFN gamma) regulates NAMPT in tumor cells as a mechanism of resistance that impedes the normal anti-tumorigenic effects of IFN gamma. (2) Methods: Utilizing a variety of melanoma cells, mouse models, Crispr-Cas9, and molecular biology techniques, we explored the importance of IFN gamma-inducible NAMPT during melanoma growth. (3) Results: We demonstrated that IFN gamma mediates the metabolic reprogramming of melanoma cells by inducing Nampt through a Stat1 binding site in the Nampt gene, increasing cell proliferation and survival. Further, IFN/STAT1-inducible Nampt promotes melanoma in vivo. (4) Conclusions: We provided evidence that melanoma cells directly respond to IFN gamma by increasing NAMPT levels, improving their fitness and growth in vivo (control n = 36, SBS KO n = 46). This discovery unveils a possible therapeutic target that may improve the efficacy of immunotherapies involving IFN responses in the clinic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available