4.7 Article

Sodium Glucose Cotransporter-2 Inhibitor Empagliflozin Increases Antioxidative Capacity and Improves Renal Function in Diabetic Rats

Journal

JOURNAL OF CLINICAL MEDICINE
Volume 12, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/jcm12113815

Keywords

diabetes mellitus; diabetic nephropathy; oxidative stress; SGLT2 inhibitor; empagliflozin; malondialdehyde

Ask authors/readers for more resources

Diabetic nephropathy involves oxidative stress as one of the main pathologic mechanisms. This study aimed to evaluate the effects of the SGLT2 inhibitor empagliflozin on oxidative stress and renal function in diabetes. Results showed that empagliflozin improved renal function by reducing urea, uric acid, and creatinine levels, increasing antioxidant capacity, and reducing oxidative damage.
Introduction: There are several pathologic mechanisms involved in diabetic nephropathy, but the role of oxidative stress seems to be one of the most important. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs that might also have some other effects in addition to lowering glucose. The aim of this study was to evaluate the possible effects of the SGLT2 inhibitor empagliflozin on oxidative stress and renal function in diabetes. Methods: Male Wistar rats were randomly divided into four groups: control, control-treated, diabetic, and diabetic-treated (n = 8 per group). Diabetes was induced by a single intraperitoneal dose of streptozotocin (50 mg/kg). The treated animals received empagliflozin for 5 weeks (20 mg/kg/day/po). All groups were sacrificed on the 36th day, and blood and tissue samples were collected. Serum levels of urea, uric acid, creatinine, and glucose levels were determined. The level of malondialdehyde (MDA) and glutathione (GLT), as well as the activity of catalase (CAT) and superoxide dismutase (SOD), was measured in all groups. Data were analyzed using one-way Anova and paired T-tests, and p <= 0.05 was considered significant. Results: Diabetes significantly increased urea (p < 0.001), uric acid (p < 0.001), and creatinine (p < 0.001) in the serum, while the activities of CAT (p < 0.001) and SOD (p < 0.001) were reduced. GLT was also reduced (p < 0.001), and MDA was increased (p < 0.001) in non-treated animals. Treatment with empagliflozin improved renal function, as shown by a reduction in the serum levels of urea (p = 0.03), uric acid (p = 0.03), and creatinine (p < 0.001). Empagliflozin also increased the antioxidant capacity by increasing CAT (p = 0.035) and SOD (p = 0.02) activities and GLT content (p = 0.01) and reduced oxidative damage by lowering MDA (p < 0.001). Conclusions: It seems that uncontrolled diabetes induces renal insufficiency by decreasing antioxidant defense mechanisms and inducing oxidative stress. Empagliflozin might have additional benefits in addition to lowering glucose-reversing these processes, improving antioxidative capacity, and improving renal function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available