4.6 Letter

Dielectric-Metallic Double-Gradient Composition Design for Stable Zn Metal Anodes

Journal

ACS ENERGY LETTERS
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.3c00367

Keywords

-

Ask authors/readers for more resources

A 60 nm artificial protective layer called GZH, with a spatial dielectric-metallic gradient composition, is developed through Zn and HfO2 cosputtering. This design effectively suppresses hydrogen evolution and promotes dendrite-free Zn deposition. With stable battery operation at high currents, the full-cell battery delivers a capacity retention of around 75% after 2000 cycles when paired with a vanadate cathode.
The commercial implementation of aqueous Zn-ion batteries is being impeded by the rampant dendrite growth and exacerbated side reactions on the Zn metal anodes. Herein, a 60 nm artificial protective layer with spatial dielectric-metallic gradient composition (denoted as GZH) is developed via Zn and HfO2 cosputtering. In this design, the top HfO2 layer with high permittivity and low electronic conductivity effectively suppresses hydrogen evolution. The intermediate Zn-rich oxide region promotes the dendrite-free Zn deposition and reinforces the contact between Zn and the sputtered layer. This design allows stable battery operation at high currents. Symmetric cells with Zn-GZH exhibit stable voltage separation over 500 h at 10 mA cm(-2) with a cutoff capacity of 5 mAh cm(-2). When paired with a vanadate cathode, the full-cell battery delivers a capacity retention of around 75% after 2000 cycles. This design concept may apply to other aqueous metal batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available