4.6 Article

High-Energy-Density, Long-Life Li-Metal Batteries via Application of External Pressure

Journal

ACS ENERGY LETTERS
Volume 8, Issue 7, Pages 2970-2978

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.3c00910

Keywords

-

Ask authors/readers for more resources

In this study, a carbonate-electrolyte-based Li-metal battery with high areal capacity and long cycle life is proposed. The cycling stability is improved by applying external compressive pressure and a boehmite-coated separator, resulting in 82% retention of initial capacity after 500 cycles. This research provides important insights for realizing high-energy-density Li-metal batteries and demonstrates the potential of employing cell compression to increase battery life and energy density.
Theapplication of commercially available carbonate-basedelectrolytesto Li-metal batteries (LMBs) is challenging because of the uncontrollableside reactions of the electrolytes with Li anodes. Herein, a practicalcarbonate-electrolyte-based LMB with a high areal capacity and longcycle life is proposed. The cycling stability of the proposed LMBis established by applying an external compressive pressure (1200kPa) and a boehmite-coated separator to prevent the short circuitof the electrodes. The external pressure drives the growth of theLi metal as a dense uniform layer instead of dendrites and mitigatesthe formation of microcracks in the charged Ni-rich layered cathode.The unprecedented cycling stability of the stacked LMB with a Ni-richlayered cathode, retaining 82.0% of its initial capacity after 500cycles, can prove instrumental in realizing practical high-energy-densityLMBs, thus demonstrating the possibility of employing cell compressionto increase the life and energy density of LMBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available