4.7 Article

Mixed mode brittle fracture of stereolithographic 3D-printed parts

Journal

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
Volume 25, Issue -, Pages 3177-3188

Publisher

ELSEVIER
DOI: 10.1016/j.jmrt.2023.06.175

Keywords

Additive manufacturing; Mixed mode I/II; Fracture; SLA; DIC

Ask authors/readers for more resources

This research investigates the fracture behavior and crack propagation of cracked plates in 3D printing. Different fracture modes were obtained by changing the angle between the crack and the applied load. The study uses stereolithography (SLA) technique to fabricate specimens and finite element method and digital image correlation technique to determine stress intensity factors and strain field.
Technical advances in additive manufacturing (AM), also known as three-dimensional (3D) printing, have led to applications of this technology in creation of end-use items. Consequently, performance and the mechanical strength of AMed parts have become of significant importance. In this research, fracture behavior and crack propagation of AMed cracked plates are investigated. To this aim, the stereolithography (SLA) technique is used to fabricate square plate specimens with a hole in the center and radial cracks that started at the perimeter of the central hole. Here, full range of mixed-mode fracture (from pure mode I to pure mode II) are obtained by altering the angle between the crack and the applied load. We used the finite element method to determine stress intensity factors. This study deals with a series of experiments on 3D-printed cracked plates to study mixed-mode fracture and crack propagation in brittle fracture of SLA 3D-printed components. Additionally, the digital image correlation technique was used to determine strain field on the surface of the specimens. As SLA is one of the most commonly used concepts in polymer 3D printing and has garnered significant attention for fabrication of complex structural elements, the outcomes of this study are useful for next developments and innovative designs of 3D-printed polymeric components. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available