4.6 Article

Nanoporous Carbon Immunosensor for Highly Accurate and Sensitive Clinical Detection of Glial Fibrillary Acidic Protein in Traumatic Brain Injury, Stroke, and Spinal Cord Injury

Journal

ACS BIOMATERIALS SCIENCE & ENGINEERING
Volume 9, Issue 5, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.3c00048

Keywords

nanoporous carbon immunosensor; serum bodily fluid; traumatic brain injury; spinal cord injury; stroke

Ask authors/readers for more resources

This research developed a novel nanoporous carbon screen-printed electrode to create an ultrasensitive GFAP immunosensor for rapid and accurate detection of GFAP levels in CNS injury patients' serum. The immunosensor showed comparable diagnostic and prognostic performance to existing clinical modalities, presenting the potential for rapid and accurate POC diagnosis and prognosis of CNS injuries in a cost-effective and near real-time manner.
Elevated glial fibrillary acidic protein (GFAP) in the blood serum is one of the promising bodily fluid markers for the diagnosis of central nervous system (CNS) injuries, including traumatic brain injury (TBI), stroke, and spinal cord injury (SCI). However, accurate and point-of-care (POC) quantification of GFAP in clinical blood samples has been challenging and yet to be clinically validated against gold-standard assays and outcome practices. This work engineered and characterized a novel nanoporous carbon screen-printed electrode with significantly increased surface area and conductivity, as well as preserved stability and anti-fouling properties. This nano-decorated electrode was immobilized with the target GFAP antibody to create an ultrasensitive GFAP immunosensor and quantify GFAP levels in spiked samples and the serum of CNS injury patients. The immunosensor presented a dynamic detection range of 100 fg/mL to 10 ng/mL, a limit of detection of 86.6 fg/mL, and a sensitivity of 20.3 ? mL/pg mm2 for detecting GFAP in the serum. Its clinical utility was demonstrated by the consistent and selective quantification of GFAP comparable to the ultrasensitive single-molecule array technology in 107 serum samples collected from TBI, stroke, and SCI patients. Comparing the diagnostic and prognostic performance of the immunosensor with the existing clinical paradigms confirms the immunosensor's accuracy as a potential complement to the existing imaging diagnostic modalities and presents a potential for rapid, accurate, cost-effective, and near realtime POC diagnosis and prognosis of CNS injuries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available