4.6 Article

Directed Motion of Metallodielectric Particles by Contact Charge Electrophoresis

Journal

LANGMUIR
Volume 32, Issue 49, Pages 13167-13173

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.6b03361

Keywords

-

Funding

  1. National Science Foundation [CBET 1351704, CBET 1264550]

Ask authors/readers for more resources

We investigate the dynamics of metallodielectric Janus particles moving via contact charge electrophoresis (CCEP) between two parallel electrodes. CCEP uses a constant voltage to repeatedly charge and actuate conductive particles within a dielectric fluid, resulting in rapid oscillatory motion between the electrodes. In addition to particle oscillations, we find that micrometer-scale Janus particles move perpendicular to the field at high speeds (up to 600 mu m/s) and over large distances. We characterize particle motions and propose a mechanism based on the rotation-induced translation of the particle following charge transfer at the electrode surface. The propulsion mechanism is supported both by experiments with fluorescent particles that reveal their rotational motions and by simulations of CCEP dynamics that capture the relevant electrostatics and hydrodynamics. We also show that interactions among multiple particles can lead to repulsion, attraction, and/or cooperative motions depending on the position and phase of the respective particle oscillators. Our results demonstrate how particle asymmetries can be used to direct the motions of active colloids powered by CCEP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available