4.6 Article

Antibacterial Activity of Eravacycline Against Carbapenem-Resistant Gram-Negative Isolates in China: An in vitro Study

Journal

INFECTION AND DRUG RESISTANCE
Volume 16, Issue -, Pages 2271-2279

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IDR.S396910

Keywords

eravacycline; tigecycline; carbapenem-resistant; gram-negative isolates; drug sensitivity; time-kill curves

Ask authors/readers for more resources

In this study, the antibacterial activity of Eravacycline against carbapenem-resistant gram-negative bacteria (CRGNB) was analyzed. The results showed that Eravacycline had a broad-spectrum antimicrobial activity and a stronger bactericidal effect compared to tigecycline. This provides a theoretical basis for the future clinical treatment of drug-resistant bacterial infections.
Objective: Eravacycline is a novel, fully synthetic fluorocycline antibiotic being developed for the treatment of serious infections, with a broad-spectrum antimicrobial activity, including against carbapenem-resistant gram-negative bacteria (CRGNB). However, the in vitro activity of eravacycline against CRGNB has not been well known in China. In this study, we analysed the antibacterial activity of eravacycline against CRGNB isolates in order to provide a theoretical basis for the clinical treatment. Methods: A total of 346 isolates of CRGNB were collected from two different tertiary care hospitals in Zhejiang, China. Carbapenem resistance genes of all isolates were detected by polymerase chain reaction. And we analysed the in vitro activity of eravacycline against CRGNB by antimicrobial susceptibility tests. In addition, the time-kill curves were generated to evaluate the antibacterial effect of tigecycline and eravacycline. Results: Four different types of carbapenem-resistant isolates were collected, including 50 Escherichia coli isolates, 160 Klebsiella pneumoniae isolates, 42 Enterobacter cloacae complex isolates, and 94 Acinetobacter baumannii isolates. The carbapenem resistance genes were identified in 346 isolates, including bla(KPC-2) (48.0%), bla(OXA-23) (27.2%), bla(NDM-1) (23.1%), and bla(NDM-16) (0.3%). The antimicrobial susceptibility testing results showed that the minimum inhibitory concentration (MIC) values of 346 isolates were within the sensitivity range (<= 0.0625 similar to 16 mg/L) and that the MIC50 or MIC90 of eravacycline was generally approximately 2-fold lower than tigecycline. In addition, the time-kill curves showed that the bactericidal effect of eravacycline was stronger than that of tigecycline against four different types of isolates. Conclusion: Our research indicated that eravacycline had a good antibacterial effect on CRGNB, which could provide a theoretical basis for the clinical treatment of drug-resistant bacterial infections in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available