4.7 Article Data Paper

Watershed carbon yield derived from gauge observations and river network connectivity in the United States

Journal

SCIENTIFIC DATA
Volume 10, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41597-023-02162-7

Keywords

-

Ask authors/readers for more resources

River networks are crucial for the global carbon cycle. This study provides important data on the riverine load of particulate organic carbon (POC) and dissolved organic carbon (DOC) across the Conterminous United States (CONUS) and estimates net gain or net loss of POC and DOC in watersheds using river network connectivity information.
River networks play a critical role in the global carbon cycle. Although global/continental scale riverine carbon cycle studies demonstrate the significance of rivers and streams for linking land and coastal regions, the lack of spatially distributed riverine carbon load data represents a gap for quantifying riverine carbon net gain or net loss in different regions, understanding mechanisms and factors that influence the riverine carbon cycle, and testing simulations of aquatic carbon cycle models at fine scales. Here, we (1) derive the riverine load of particulate organic carbon (POC) and dissolved organic carbon (DOC) for over 1,000 hydrologic stations across the Conterminous United States (CONUS) and (2) use the river network connectivity information for over 80,000 catchment units within the National Hydrography Dataset Plus (NHDPlus) to estimate riverine POC and DOC net gain or net loss for watersheds controlled between upstream-downstream hydrologic stations. The new riverine carbon load and watershed net gain/loss represent a unique contribution to support future studies for better understanding and quantification of riverine carbon cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available